精英家教网 > 高中数学 > 题目详情
1.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若a=1,b2+c2-bc=1,则△ABC面积的取值范围是(  )
A.$(\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{4}]$B.$(\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{4})$C.$(\frac{{\sqrt{3}}}{12},\frac{{\sqrt{3}}}{4})$D.$(\frac{{\sqrt{3}}}{12},\frac{{\sqrt{3}}}{4}]$

分析 由已知及余弦定理可求cosA=$\frac{1}{2}$,可求sinA,利用正弦定理可求b=$\frac{2\sqrt{3}}{3}$sinB,c=$\frac{2\sqrt{3}}{3}$sin($\frac{2π}{3}$-B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC=$\frac{\sqrt{3}}{6}$sin(2B-$\frac{π}{6}$)+$\frac{\sqrt{3}}{12}$,由已知可求B的范围,进而可求范围$\frac{π}{6}$<2B-$\frac{π}{6}$<$\frac{5π}{6}$,利用正弦函数的图象和性质 即可计算得解.

解答 解:∵a=1,b2+c2-bc=1,
∴b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴sinA=$\frac{\sqrt{3}}{2}$,
∴由$\frac{1}{\frac{\sqrt{3}}{2}}=\frac{b}{sinB}=\frac{c}{sinC}$,可得:b=$\frac{2\sqrt{3}}{3}$sinB,c=$\frac{2\sqrt{3}}{3}$sinC=$\frac{2\sqrt{3}}{3}$sin($\frac{2π}{3}$-B),
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$×$\frac{2\sqrt{3}}{3}$sinB×$\frac{2\sqrt{3}}{3}$sin($\frac{2π}{3}$-B)=$\frac{\sqrt{3}}{3}$sinB($\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB)=$\frac{\sqrt{3}}{6}$sin(2B-$\frac{π}{6}$)+$\frac{\sqrt{3}}{12}$,
∵B为锐角,可得:$\frac{π}{6}$$<B<\frac{π}{2}$,可得:$\frac{π}{6}$<2B-$\frac{π}{6}$<$\frac{5π}{6}$,
∴sin(2B-$\frac{π}{6}$)∈($\frac{1}{2}$,1],可得:S△ABC=$\frac{\sqrt{3}}{6}$sin(2B-$\frac{π}{6}$)+$\frac{\sqrt{3}}{12}$∈($\frac{\sqrt{3}}{6}$,$\frac{\sqrt{3}}{4}$].
故选:A.

点评 本题主要考查了余弦定理,正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(x-z,1),$\overrightarrow{b}$=(2,y+z),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,若实数x,y满足不等式组$\left\{\begin{array}{l}{y-x≥0}\\{x+y-7≤0}\\{x≥0}\end{array}\right.$,则z的最大值为(  )
A.$\frac{21}{2}$B.7C.14D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在三棱柱ABC-A1B1C1中,已知侧棱CC1⊥底面ABC,M为BC的中点,$AC=AB=3,BC=2,C{C_1}=\sqrt{2}$.
(1)证明:B1C⊥平面AMC1
(2)求点A1到平面AMC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在三棱柱ABC-A1B1C1中,CC1⊥底面A1B1C1,且A1C1⊥B1C1,A1C1=3$\sqrt{2}$,B1C1=CC1=2,P是BC1上一动点,则CP+PA1的最小值为(  )
A.5$\sqrt{2}$B.5C.$\sqrt{10}$D.$\sqrt{34}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$,则z=x+2y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某单位N名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
(Ⅰ)求正整数a,b,N的值;
(Ⅱ)现要从年龄低于40岁的员工用分层抽样的方法抽取42人,则年龄在第1,2,3组得员工人数分别是多少?
(Ⅲ)为了估计该单位员工的阅读倾向,现对该单位所有员工中按性别比例抽查的40人是否喜欢阅读国学类书
喜欢阅读国学类 不喜欢阅读国学类 合计
 男 14 4 18
 女 8 14 22
 合计 22 18 40
籍进行了调查,调查结果如下所示:(单位:人)
下面是年龄的分布表:
 区间[25,30)[30,35)[35,40)[40,45)[45,50)
 人数 28 a b
根据表中数据,我们能否有99%的把握认为该位员工是否喜欢阅读国学类书籍和性别有关系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知α,β均为锐角,且cos(α+β)=ncos(α-β),则tanαtanβ=(  )
A.$\frac{1-n}{1+n}$B.$\frac{1+n}{1-n}$C.$\frac{n-1}{1+n}$D.$\frac{1+n}{n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z满足(1+2i)z=3+iz,则复数z对应的点所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow m=(sinx,-\frac{1}{2})$,$\overrightarrow n=(\sqrt{3}cosx,cos2x)$,函数$f(x)=\overrightarrow m•\overrightarrow n$
(1)求函数f(x)的最大值及最小正周期;
(2)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,求g(x)在$[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

同步练习册答案