精英家教网 > 高中数学 > 题目详情
10.已知复数z满足(1+2i)z=3+iz,则复数z对应的点所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:(1+2i)z=3+iz,∴(1+i)z=3,∴(1-i)(1+i)z=3(1-i),∴2z=3-3i,
∴z=$\frac{3}{2}$-$\frac{3}{2}$i.
则复数z对应的点($\frac{3}{2}$,-$\frac{3}{2}$)所在象限是第四象限.
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合U={x|x>1},集合A={x|(x-1)(x-3)<0},则∁UA=(  )
A.[3,+∞)B.(3,+∞)C.(-∞,-1)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若a=1,b2+c2-bc=1,则△ABC面积的取值范围是(  )
A.$(\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{4}]$B.$(\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{4})$C.$(\frac{{\sqrt{3}}}{12},\frac{{\sqrt{3}}}{4})$D.$(\frac{{\sqrt{3}}}{12},\frac{{\sqrt{3}}}{4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(3,0),上、下顶点分别为A,B,直线AF交Γ于另一点M,若直线BM交x轴于点N(12,0),则Γ的离心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一只小虫在半径为3的球内自由飞行,若在飞行中始终保持与球面的距离大于1,称为“安全距离”,则小虫安全的概率为$\frac{8}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{bn}是等比数列,${b_n}={2^{{a_n}-1}}$且a1=2,a3=4.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$的一条对称轴方程为$x=\frac{π}{6}$,则函数f(x)的单调递增区间为(  )
A.$[{kπ-\frac{π}{3},kπ+\frac{π}{6}}]$,(k∈Z)B.$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}]$,(k∈Z)
C.$[{kπ-\frac{7π}{12},kπ-\frac{π}{12}}]$,(k∈Z)D.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]$,(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知变量x,y满足$\left\{\begin{array}{l}x-y≥-2\\ x+y≥-2\\ x≤0\end{array}\right.$则$\frac{y+2}{x+3}$的最大值为(  )
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某商场拟对商品进行促销,现有两种方案供选择.每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,顶计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4.第二个月销量是笫一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令ξi(i=1,2)表示实施方案i的第二个月的销量是促销前销量的倍数.
(Ⅰ)求ξ1,ξ2的分布列:
(Ⅱ)不管实施哪种方案,ξi与第二个月的利润之间的关系如表,试比较哪种方案第二个月的利润更大.
销量倍数ξi≤1.71.7<ξi<2.3ξi2.3
利润(万元)152025

查看答案和解析>>

同步练习册答案