精英家教网 > 高中数学 > 题目详情
15.已知数列{bn}是等比数列,${b_n}={2^{{a_n}-1}}$且a1=2,a3=4.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Sn

分析 (1)设公比为q,由题意得:$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{2}^{{a}_{n+1}-1}}{{2}^{{a}_{n}-1}}$=${2}^{{a}_{n+1}-{a}_{n}}$=q,即an+1-an=log2q.可得{an}为等差数列,即可得出.
(2)由(1)得:bn=2n.可得$\frac{{a}_{n}}{{b}_{n}}$=$\frac{a_n}{2^n}=\frac{n+1}{2^n}$,利用“错位相减法“与等比数列的求和公式.

解答 解:(1)设公比为q,由题意得:$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{2}^{{a}_{n+1}-1}}{{2}^{{a}_{n}-1}}$=${2}^{{a}_{n+1}-{a}_{n}}$=q,即an+1-an=log2q.
所以{an}为等差数列,又$d=\frac{{{a_3}-{a_1}}}{2}=1$,a1=2.
所以${a_n}=n+1,n∈{N^*}$.
(2)由(1)得:bn=2n
∴$\frac{{a}_{n}}{{b}_{n}}$=$\frac{a_n}{2^n}=\frac{n+1}{2^n}$,
∴数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Sn=$\frac{2}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{n+1}{{2}^{n}}$,
∴$\frac{1}{2}{S}_{n}$=$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$+$\frac{n+1}{{2}^{n+1}}$,
∴$\frac{1}{2}{S}_{n}$=1+$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n+1}{{2}^{n+1}}$=$\frac{1}{2}+\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n+1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{n+3}{{2}^{n+1}}$,
∴${S_n}=3-\frac{n+3}{2^n}$.

点评 本题考查了错位相减法、等差数列与等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.复数$\frac{4-2i}{1+i}$=(  )
A.1-3iB.1+3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某单位N名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
(Ⅰ)求正整数a,b,N的值;
(Ⅱ)现要从年龄低于40岁的员工用分层抽样的方法抽取42人,则年龄在第1,2,3组得员工人数分别是多少?
(Ⅲ)为了估计该单位员工的阅读倾向,现对该单位所有员工中按性别比例抽查的40人是否喜欢阅读国学类书
喜欢阅读国学类 不喜欢阅读国学类 合计
 男 14 4 18
 女 8 14 22
 合计 22 18 40
籍进行了调查,调查结果如下所示:(单位:人)
下面是年龄的分布表:
 区间[25,30)[30,35)[35,40)[40,45)[45,50)
 人数 28 a b
根据表中数据,我们能否有99%的把握认为该位员工是否喜欢阅读国学类书籍和性别有关系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}的前n项和为Sn=n2+n+1,bn=(-1)n(an-2)(n∈N*),则数列{bn}的前50项和为49.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z满足(1+2i)z=3+iz,则复数z对应的点所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,若正方形ABCD四个顶点在双曲线C上,且AB,CD的中点为双曲线C的两个焦点,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\sqrt{5}-1$C.$\frac{{\sqrt{5}+1}}{2}$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-ax.
(1)当$a=\frac{2}{e}$时,求函数f(x)在x=e处的切线方程;
(2)若关于x的不等式lnx-ax>0的解集有唯一整数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-3|
(1)解不等式:f(x)+f(x+1)≤2;
(2)若a<0,求证:f(ax)-f(3a)≥af(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=lg(1+x)-lg(1-x),则函数f(x)是(  )
A.偶函数,且在(0,1)上是减函数B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数D.奇函数,且在(0,1)上是增函数

查看答案和解析>>

同步练习册答案