6£®Ä³µ¥Î»NÃûÔ±¹¤²Î¼Ó¡°ÎÒ°®ÔĶÁ¡±»î¶¯£¬ËûÃǵÄÄêÁäÔÚ25ËêÖÁ50ËêÖ®¼ä£¬°´ÄêÁä·Ö×飺µÚ1×é[25£¬30£©£¬µÚ2×é[30£¬35£©£¬µÚ3×é[35£¬40£©£¬µÚ4×é[40£¬45£©£¬µÚ5×é[45£¬50£©£¬µÃµ½µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£®
£¨¢ñ£©ÇóÕýÕûÊýa£¬b£¬NµÄÖµ£»
£¨¢ò£©ÏÖÒª´ÓÄêÁäµÍÓÚ40ËêµÄÔ±¹¤Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡42ÈË£¬ÔòÄêÁäÔÚµÚ1£¬2£¬3×éµÃÔ±¹¤ÈËÊý·Ö±ðÊǶàÉÙ£¿
£¨¢ó£©ÎªÁ˹À¼Æ¸Ãµ¥Î»Ô±¹¤µÄÔĶÁÇãÏò£¬ÏֶԸõ¥Î»ËùÓÐÔ±¹¤Öа´ÐÔ±ð±ÈÀý³é²éµÄ40ÈËÊÇ·ñϲ»¶ÔĶÁ¹úѧÀàÊé
ϲ»¶ÔĶÁ¹úѧÀà ²»Ï²»¶ÔĶÁ¹úѧÀ࠺ϼÆ
 ÄР14 4 18
 Å® 8 14 22
 ºÏ¼Æ 22 18 40
¼®½øÐÐÁ˵÷²é£¬µ÷²é½á¹ûÈçÏÂËùʾ£º£¨µ¥Î»£ºÈË£©
ÏÂÃæÊÇÄêÁäµÄ·Ö²¼±í£º
 Çø¼ä[25£¬30£©[30£¬35£©[35£¬40£©[40£¬45£©[45£¬50£©
 ÈËÊý 28 a b
¸ù¾Ý±íÖÐÊý¾Ý£¬ÎÒÃÇÄÜ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¸ÃλԱ¹¤ÊÇ·ñϲ»¶ÔĶÁ¹úѧÀàÊé¼®ºÍÐÔ±ðÓйØÏµ£¿
¸½£º${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬ÆäÖÐn=a+b+c+d£®
P£¨K2¡Ýk0£©0.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

·ÖÎö £¨¢ñ£©ÀûÓÃÆµÂÊÓëÆµÊýµÄ¹ØÏµÇó³öÑù±¾ÈÝÁ¿N¡¢¼ÆËã³öa¡¢bµÄÖµ£»
£¨¢ò£©Çó³öÄêÁäµÍÓÚ40ËêµÄÔ±¹¤Êý£¬ÀûÓ÷ֲã³éÑùÔ­ÀíÇó³öÿ×é³éÈ¡µÄÈËÊý£»
£¨¢ó£©¸ù¾Ý±íÖÐÊý¾Ý¼ÆËãK2µÄ¹Û²âÖµ£¬²é±íµÃ³ö¸ÅÂʽáÂÛ£®

½â´ð ½â£º£¨¢ñ£©×ÜÈËÊý£º$N=\frac{28}{5¡Á0.02}=280$£¬a=28£¬
µÚ3×éµÄƵÂÊÊÇ£º1-5¡Á£¨0.02+0.02+0.06+0.02£©=0.4
ËùÒÔb=280¡Á0.4=112¡­£¨4·Ö£©
£¨¢ò£©ÒòΪÄêÁäµÍÓÚ40ËêµÄÔ±¹¤ÔÚµÚ1£¬2£¬3×飬¹²ÓÐ28+28+112=168£¨ÈË£©£¬
ÀûÓ÷ֲã³éÑùÔÚ168ÈËÖгéÈ¡42ÈË£¬Ã¿×é³éÈ¡µÄÈËÊý·Ö±ðΪ£º
µÚ1×é³éÈ¡µÄÈËÊýΪ$28¡Á\frac{42}{168}=7$£¨ÈË£©£¬
µÚ2×é³éÈ¡µÄÈËÊýΪ$28¡Á\frac{42}{168}=7$£¨ÈË£©£¬
µÚ3×é³éÈ¡µÄÈËÊýΪ$112¡Á\frac{42}{168}=28$£¨ÈË£©£¬
ËùÒÔµÚ1£¬2£¬3×é·Ö±ð³é7ÈË¡¢7ÈË¡¢28ÈË£®¡­£¨8·Ö£©
£¨¢ó£©¼ÙÉèH0£º¡°ÊÇ·ñϲ»¶¿´¹úѧÀàÊé¼®ºÍÐÔ±ðÎÞ¹ØÏµ¡±£¬¸ù¾Ý±íÖÐÊý¾Ý£¬
ÇóµÃK2µÄ¹Û²âÖµ$k=\frac{{40¡Á{{£¨14¡Á14-4¡Á8£©}^2}}}{22¡Á18¡Á22¡Á18}¡Ö6.8605£¾6.635$£¬
²é±íµÃP£¨K2¡Ý6.635£©=0.01£¬´Ó¶øÄÜÓÐ99%µÄ°ÑÎÕÈÏΪ¸Ãµ¥Î»Ô±¹¤ÊÇ·ñϲ»¶ÔĶÁ¹ú
ѧÀàÊé¼®ºÍÐÔ±ðÓйØÏµ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼Óë¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªx£¬y¡ÊR£¬iΪÐéÊýµ¥Î»£¬$x+£¨y-2£©i=\frac{2}{1+i}$£¬Ôòx+y=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®É躯Êý$f£¨x£©=\sqrt{1-x}+\sqrt{1+x}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄÖµÓò£»
£¨2£©µ±ÊµÊýx¡Ê[0£¬1]£¬Ö¤Ã÷£º$f£¨x£©¡Ü2-\frac{1}{4}{x^2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èôº¯Êýy=f£¨x£©µÄͼÏóÉÏ´æÔÚÁ½¸öµãA£¬B¹ØÓÚÔ­µã¶Ô³Æ£¬Ôò¶Ô³Æµã£¨A£¬B£©Îªy=f£¨x£©µÄ¡°ÂÏÉúµã¶Ô¡±£¬µã¶Ô£¨A£¬B£©Ó루B£¬A£©¿É¿´×÷ͬһ¸ö¡°ÂÏÉúµã¶Ô¡±£¬Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}{2£¬x£¼0}\\{-{x}^{3}+6{x}^{2}-9x+2-a£¬x¡Ý0}\end{array}\right.$Ç¡ºÃÓÐÁ½¸ö¡°ÂÏÉúµã¶Ô¡±£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®4B£®2C£®1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÈñ½Ç¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôa=1£¬b2+c2-bc=1£¬Ôò¡÷ABCÃæ»ýµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨\frac{{\sqrt{3}}}{6}£¬\frac{{\sqrt{3}}}{4}]$B£®$£¨\frac{{\sqrt{3}}}{6}£¬\frac{{\sqrt{3}}}{4}£©$C£®$£¨\frac{{\sqrt{3}}}{12}£¬\frac{{\sqrt{3}}}{4}£©$D£®$£¨\frac{{\sqrt{3}}}{12}£¬\frac{{\sqrt{3}}}{4}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ä³¹«Ë¾ÎªÊÊÓ¦Êг¡ÐèÇó£¬Í¶Èë98ÍòÔªÒý½øÐÂÉú²úÉ豸£¬²¢ÂíÉÏͶÈëÉú²ú£¬µÚÒ»ÄêÐèÒªµÄ¸÷ÖÖ·ÑÓÃÊÇ12ÍòÔª£¬´ÓµÚ¶þÄ꿪ʼ£¬ËùÐè·ÑÓñÈÉÏÒ»ÄêÔö¼Ó4ÍòÔª£¬¶øÃ¿ÄêÒòÒýÈë¸ÃÉ豸¿É»ñµÃµÄÄêÀûÈóΪ50ÍòÔª£¬ÔòÒý½ø¸ÃÉ豸3Äêºó£¬¸Ã¹«Ë¾¿ªÊ¼Ó¯Àû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÍÖÔ²¦££º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÓÒ½¹µãΪF£¨3£¬0£©£¬ÉÏ¡¢Ï¶¥µã·Ö±ðΪA£¬B£¬Ö±ÏßAF½»¦£ÓÚÁíÒ»µãM£¬ÈôÖ±ÏßBM½»xÖáÓÚµãN£¨12£¬0£©£¬Ôò¦£µÄÀëÐÄÂÊÊÇ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬${b_n}={2^{{a_n}-1}}$ÇÒa1=2£¬a3=4£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ$\left\{{\frac{a_n}{b_n}}\right\}$µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¸´Êý$\overline{z}$=$\frac{2}{i£¨3-i£©}$£¬Ôò¸´ÊýzÔÚ¸´Æ½ÃæÄڵĵãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸