| A. | 5$\sqrt{2}$ | B. | 5 | C. | $\sqrt{10}$ | D. | $\sqrt{34}$ |
分析 连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,不难看出CP+PA1的最小值是A1C的连线.(在BC1上取一点与A1C构成三角形,因为三角形两边和大于第三边)由余弦定理即可求解.
解答
解:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,
连A1C,则A1C的长度就是所求的最小值.
BC1=2$\sqrt{2}$,A1C1=3$\sqrt{2}$,A1B=$\sqrt{26}$,通过计算可得∠A1C1P=90°,
又∠BC1C=45°,
∴∠A1C1C=135°,
由余弦定理可求得A1C=$\sqrt{18+4-2×3\sqrt{2}×2×(-\frac{\sqrt{2}}{2})}$=$\sqrt{34}$,
故选:D.
点评 本题考查棱柱的结构特征,余弦定理的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-2,6] | B. | [-3,5] | C. | [2,6] | D. | [3,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | (3,+∞) | C. | (-∞,-1) | D. | (1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{4}]$ | B. | $(\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{4})$ | C. | $(\frac{{\sqrt{3}}}{12},\frac{{\sqrt{3}}}{4})$ | D. | $(\frac{{\sqrt{3}}}{12},\frac{{\sqrt{3}}}{4}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com