精英家教网 > 高中数学 > 题目详情
18.在区间[1,e]上任取实数a,在区间[0,1]上任取实数b,使函数f(x)=ax2+x+$\frac{1}{4}$b有两个相异零点的概率是(  )
A.$\frac{1}{e-1}$B.$\frac{1}{2(e-1)}$C.$\frac{1}{4(e-1)}$D.$\frac{1}{8(e-1)}$

分析 首先求出在区间[1,e]上任取实数a,在区间[0,1]上任取实数b,使函数f(x)=ax2+x+$\frac{1}{4}$b有两个相异零点的a,b关系,利用区域的面积比求概率.

解答 解:在区间[1,e]上任取实数a,
在区间[0,1]上任取实数b,对应区域是边长分别为e-1,1的矩形,面积为e-1,而使函数f(x)=ax2+x+$\frac{1}{4}$b有两个相异零点的a,b满足$\left\{\begin{array}{l}{1≤a≤e}\\{0≤b≤1}\\{△=1-ab>0}\end{array}\right.$,对应区域如图阴影部分:由几何概型的公式得到所求概率为$\frac{{∫}_{1}^{e}\frac{1}{a}da}{e-1}=\frac{lne}{e-1}=\frac{1}{e-1}$;
故选A.

点评 本题考查了几何概型的概率求法;关键是明确几何测度为对应区域的面积,利用数形结合理解概率为对应区域的面积比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.奇函数f(x)的定义域为R,函数g(x)=x2+f(x-1)+f(x+1),若g(1)=4,则g(-1)的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.随着互联网的发展,移动支付(又称手机支付)越来越普遍,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15~65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有n个人,把这n个人按照年龄分成5组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),然后绘制成如图所示的频率分布直方图,其中第一组的频数为20.
(1)求n和x的值,并根据频率分布直方图估计 这组数据的众数,
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数,
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我国古代数学名著《九章算术》中记录割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2-$\frac{1}{2-\frac{1}{2-…}}$中“…”即代表无限次重复,但原式是个定制x,这可以通过方程2-$\frac{1}{x}$=x解得x=1,类比之,$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=(  )
A.$\sqrt{2}$B.-1或2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(3,0),则|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知某学生准备利用暑假时间到北京研学旅游,其乘火车、汽车、飞机去的概率分别为0.5,0.2,0.3,则这名学生不乘汽车的概率为0.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=2sin(ωx+φ)对任意的x∈R,都有f($\frac{π}{3}$-x)=f(x).若函数g(x)=cos(ωx+φ)-1,则g($\frac{π}{6}$)的值是(  )
A.-2B.-1C.-$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到理科题的概率;
(2)该考生答对理科题的概率均为$\frac{4}{5}$,若每题答对得10分,否则得零分,现该生抽到3道理科题,求其所得总分X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若直线y=k(x+2)-3与曲线(|x|-1)2+(y-2)2=4有公共点,则k的取值范围是k≤-$\frac{5+2\sqrt{22}}{3}$或k≥3-$\frac{2}{5}$$\sqrt{30}$.

查看答案和解析>>

同步练习册答案