精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=2sin(ωx+φ)对任意的x∈R,都有f($\frac{π}{3}$-x)=f(x).若函数g(x)=cos(ωx+φ)-1,则g($\frac{π}{6}$)的值是(  )
A.-2B.-1C.-$\frac{1}{2}$D.0

分析 由题意可知函数f(x)的图象关于直线x=$\frac{π}{6}$对称,可知ω•$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,g($\frac{π}{6}$)=cos(ω•$\frac{π}{6}$+φ)-1=-1.得到选项.

解答 解:根据函数f(x)=2sin(ωx+φ)对任意的x∈R,都有f($\frac{π}{3}$-x)=f(x).
可得函数f(x)的图象关于直线x=$\frac{π}{6}$对称,
故有ω•$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,g($\frac{π}{6}$)=cos(ω•$\frac{π}{6}$+φ)-1=0-1=-1,
故选:B.

点评 本题主要考查余弦函数的图象的对称性,考查余弦函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知圆x2+y2=r2(r>0)的内接四边形的面积的最大值为2r2,类比可得椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的内接四边形的面积的最大值为2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A、B、C的对边分别为a、b、c,若△ABC的面积等于3asinB,则c=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间[1,e]上任取实数a,在区间[0,1]上任取实数b,使函数f(x)=ax2+x+$\frac{1}{4}$b有两个相异零点的概率是(  )
A.$\frac{1}{e-1}$B.$\frac{1}{2(e-1)}$C.$\frac{1}{4(e-1)}$D.$\frac{1}{8(e-1)}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.二项式(x-$\frac{2}{x}$)6的展开式中,x4的系数是-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平行四边形ABCD中,AB∥CD,已知AB=5,AD=3,cos∠DAB=$\frac{2}{5}$,E为DC中点,则$\overrightarrow{AC}•\overrightarrow{BE}$=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点O为△ABC的外心,外接圆半径为1,且满足2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的面积为$\frac{9\sqrt{15}}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=ln(x+1)-$\frac{2}{{x}^{2}}$的零点所在的大致区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在半径为2的圆中,1弧度的圆心角所对应的扇形的面积是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案