精英家教网 > 高中数学 > 题目详情
5.二项式(x-$\frac{2}{x}$)6的展开式中,x4的系数是-12.

分析 利用二项展开式的通项公式即可求得展开式中x4的系数.

解答 解:二项式(x-$\frac{2}{x}$)6展开式的通项公式为
Tr+1=C6rx6-r•(-$\frac{2}{x}$)r=(-2)r•${C}_{6}^{r}$•x6-2r
令6-2r=4,解得r=1;
∴二项式(x-$\frac{2}{x}$)6展开式中x4的系数为:
(-2)1•C61=-12.
故答案为:-12.

点评 本题考查了二项式定理的应用问题,重点考查通项公式,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知公差不为0的等差数列{an}前n项和为Sn,且S1,S2,S4成等比数列,则$\frac{{a}_{5}}{{a}_{1}}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.平面几何中有如下结论:若在三角形ABC的内切圆的半径为r1,外接圆的半径为r2,则$\frac{{r}_{1}}{{r}_{2}}$=$\frac{1}{2}$.推广到空间,可以得到类似结论;若正四面体P-ABC(所有棱长都相等的四面体叫正四面体)的内切球半径为R1,外接球半径为R2,则$\frac{{R}_{1}}{{R}_{2}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(3,0),则|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$a=\int_{-\frac{π}{4}}^{\frac{3π}{4}}{2cos(x-\frac{π}{4})}dx$,则${({x-\frac{a}{{\sqrt{x}}}})^8}$展开式中x5的系数为448.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=2sin(ωx+φ)对任意的x∈R,都有f($\frac{π}{3}$-x)=f(x).若函数g(x)=cos(ωx+φ)-1,则g($\frac{π}{6}$)的值是(  )
A.-2B.-1C.-$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.己知四个命题:
①在回归分析中,R2可以用来刻画回归效果,R2的值越大,模型的拟合效果越好;
②在独立性检验中,随机变量K2的值越大,说明两个分类变量有关系的可能性越大;
③在回归方程$\stackrel{∧}{y}$=0.2x+12中,当解释变量x每增加1个单位时,预报变量$\stackrel{∧}{y}$平均增加1个单位;
④两个随机变量相关性越弱,则相关系数的绝对值越接近于1;
其中真命题是(  )
A.①④B.②④C.①②D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(1<ξ<2)0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$f(x)=(1+\frac{1}{tanx}){sin^2}x-2sin(x+\frac{π}{4})sin(x-\frac{π}{4})$.
(1)若$tanα=2,α∈(0,\frac{π}{2})$,求f(α)的值;
(2)若$x∈[\frac{π}{12},\frac{π}{2}]$,求f(x)的取值范围.

查看答案和解析>>

同步练习册答案