精英家教网 > 高中数学 > 题目详情
2.已知点O为△ABC的外心,外接圆半径为1,且满足2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的面积为$\frac{9\sqrt{15}}{32}$.

分析 推导出OA=OB=OC=1,sin∠AOC=$\frac{3\sqrt{15}}{16}$,sin∠BOC=$\frac{\sqrt{15}}{8}$,sin∠AOB=$\frac{\sqrt{15}}{4}$,△ABC的面积S=S△AOC+S△BOC+S△AOB,由此能求出结果.

解答 解:∴点O为△ABC的外心,△ABC的外接圆半径为1,圆心为O,
∴OA=OB=OC=1.
且满足2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴$3\overrightarrow{BO}$=2$\overrightarrow{OA}$+4$\overrightarrow{OC}$,
两边平方,得$9{\overrightarrow{BO}}^{2}=4{\overrightarrow{OA}}^{2}+16{\overrightarrow{OC}}^{2}+16\overrightarrow{OA}•\overrightarrow{OC}$,
∴9R2=4R2+16R2+16R2cos∠AOC,
∴cos∠AOC=-$\frac{11}{16}$,sin∠AOC=$\frac{3\sqrt{15}}{16}$,
∴${S}_{△AOC}=\frac{1}{2}OA•OC•sin∠AOC$=$\frac{1}{2}×1×1×\frac{3\sqrt{15}}{16}$=$\frac{3\sqrt{15}}{32}$,
同理,由$2\overrightarrow{AO}$=3$\overrightarrow{OB}$+4$\overrightarrow{OC}$,得cos∠BOC=-$\frac{7}{8}$,sin∠BOC=$\frac{\sqrt{15}}{8}$,
S△BOC=$\frac{1}{2}×OB×OC×sin∠BOC$=$\frac{1}{2}×1×1×\frac{\sqrt{15}}{8}$=$\frac{\sqrt{15}}{16}$,
由4$\overrightarrow{CO}$=2$\overrightarrow{OA}$+3$\overrightarrow{OB}$,得cos∠AOB=$\frac{1}{4}$,sin∠AOB=$\frac{\sqrt{15}}{4}$,
${S}_{△AOB}=\frac{1}{2}×OA×OB×sin∠AOB$=$\frac{1}{2}×1×1×\frac{\sqrt{15}}{4}$=$\frac{\sqrt{15}}{8}$,
∴△ABC的面积:
S=S△AOC+S△BOC+S△AOB=$\frac{3\sqrt{15}}{32}+\frac{\sqrt{15}}{16}+\frac{\sqrt{15}}{8}$=$\frac{9\sqrt{15}}{32}$.
故答案为:$\frac{9\sqrt{15}}{32}$.

点评 本题考查考查三角形面积的求法,考查平面向量、同角三角函数关系式、三角形面积公式等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.下表是数据x,y的记录,其中y关于x的线性回归方程是$\widehat{y}$=0.6x+0.3,那么表中t的值是1.
 3 5
 2.54.5 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(3,0),则|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=2sin(ωx+φ)对任意的x∈R,都有f($\frac{π}{3}$-x)=f(x).若函数g(x)=cos(ωx+φ)-1,则g($\frac{π}{6}$)的值是(  )
A.-2B.-1C.-$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.己知四个命题:
①在回归分析中,R2可以用来刻画回归效果,R2的值越大,模型的拟合效果越好;
②在独立性检验中,随机变量K2的值越大,说明两个分类变量有关系的可能性越大;
③在回归方程$\stackrel{∧}{y}$=0.2x+12中,当解释变量x每增加1个单位时,预报变量$\stackrel{∧}{y}$平均增加1个单位;
④两个随机变量相关性越弱,则相关系数的绝对值越接近于1;
其中真命题是(  )
A.①④B.②④C.①②D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到理科题的概率;
(2)该考生答对理科题的概率均为$\frac{4}{5}$,若每题答对得10分,否则得零分,现该生抽到3道理科题,求其所得总分X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(1<ξ<2)0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若直线y=mx与函数y=$\frac{|x|-1}{|x-1|}$的图象没有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.sin75°sin15°+cos70°cos15°的值为(  )
A.1B.0C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案