分析 (1)记该考生在第一次抽到理科题为事件A,第二次和第三次均抽到理科题为事件B,则P(A)=$\frac{{C}_{4}^{1}{A}_{6}^{2}}{{A}_{7}^{3}}$,P(AB)=$\frac{{A}_{4}^{3}}{{A}_{7}^{3}}$,利用条件概率能求出该考生在第一次抽到理科题的条件下,第二次和第三次均抽到理科题的概率.
(2)由题意X的可能取值为0,10,20,30,分别求出相应的概率,由此能出其所得总分X的分布列和数学期望.
解答 解:(1)记该考生在第一次抽到理科题为事件A,
第二次和第三次均抽到理科题为事件B,
P(A)=$\frac{{C}_{4}^{1}{A}_{6}^{2}}{{A}_{7}^{3}}$,P(AB)=$\frac{{A}_{4}^{3}}{{A}_{7}^{3}}$,
∴该考生在第一次抽到理科题的条件下,第二次和第三次均抽到理科题的概率:
P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{{A}_{4}^{3}}{{C}_{4}^{1}{A}_{6}^{2}}$=$\frac{1}{5}$.
(2)P(X=0)=${C}_{3}^{0}(\frac{1}{5})^{3}$=$\frac{1}{125}$,
P(X=10)=${C}_{3}^{1}(\frac{4}{5})(\frac{1}{5})^{2}$=$\frac{12}{125}$,
P(X=20)=${C}_{3}^{2}(\frac{4}{5})^{2}(\frac{1}{5})=\frac{48}{125}$,
P(X=30)=${C}_{3}^{0}(\frac{4}{5})^{3}$=$\frac{64}{125}$,
∴其所得总分X的分布列为:
| X | 0 | 10 | 20 | 30 |
| P | $\frac{1}{125}$ | $\frac{12}{125}$ | $\frac{48}{125}$ | $\frac{64}{125}$ |
点评 本题考查条件概率、离散型随机变量的分列和数学期望等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{e-1}$ | B. | $\frac{1}{2(e-1)}$ | C. | $\frac{1}{4(e-1)}$ | D. | $\frac{1}{8(e-1)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\sqrt{5}$,+∞) | B. | [$\sqrt{5}$,2$\sqrt{5}$) | C. | [$\sqrt{3}$,+∞) | D. | [$\sqrt{3}$,2$\sqrt{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com