精英家教网 > 高中数学 > 题目详情
12.已知直线2x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O是坐标原点,且有|$\overrightarrow{OA}$$+\overrightarrow{OB}$|$≥\frac{\sqrt{3}}{3}$|$\overrightarrow{AB}$|,那么k的取值范围是(  )
A.[$\sqrt{5}$,+∞)B.[$\sqrt{5}$,2$\sqrt{5}$)C.[$\sqrt{3}$,+∞)D.[$\sqrt{3}$,2$\sqrt{5}$)

分析 利用平行四边形法则,借助于直线与圆的位置关系,利用直角三角形,即可求得结论.

解答 解:设AB中点为D,则OD⊥AB,
∵|$\overrightarrow{OA}$$+\overrightarrow{OB}$|$≥\frac{\sqrt{3}}{3}$|$\overrightarrow{AB}$|,∴|2$\overrightarrow{OD}$|$≥\frac{\sqrt{3}}{3}$|$\overrightarrow{AB}$|⇒|$\overrightarrow{AB}$|$≤2\sqrt{3}$|$\overrightarrow{OD}$|
又∵OD2+$\frac{1}{4}A{B}^{2}=4$,∴OD2≥1.
∵直线2x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A、B,
∴OD2<4
∴$1≤(\frac{k}{\sqrt{5}})^{2}<4$,解得$\sqrt{5}≤k<2\sqrt{5}$
故选:B

点评 本题考查向量知识的运用,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.甲、乙、丙三人任意站成一排,则甲站在两端的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知某学生准备利用暑假时间到北京研学旅游,其乘火车、汽车、飞机去的概率分别为0.5,0.2,0.3,则这名学生不乘汽车的概率为0.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知扇形OAB的半径OA=OB=1,$\widehat{AB}$长为$\frac{π}{3}$,则在该扇形内任取一点P,点P在△OAB内的概率为(  )  )
A.$\frac{3}{π}$B.$\frac{\sqrt{3}}{π}$C.$\frac{3\sqrt{3}}{2π}$D.$\frac{3\sqrt{2}}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到理科题的概率;
(2)该考生答对理科题的概率均为$\frac{4}{5}$,若每题答对得10分,否则得零分,现该生抽到3道理科题,求其所得总分X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将5个数学竞赛名额分配给3个不同的班级,其中甲、乙两个班至少各有1个名额,则不同的分配方案种数有20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,a,b,c是内角A,B,C所对应边,a=2,b=$\sqrt{2}$,A=$\frac{π}{4}$,则角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$(n∈N*),则a20=(  )
A.0B.2C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.从某校随机抽取部分男生进行身体素质测试,获得掷实心球的成绩数据,整理得到数据分组及频率分布表,成绩在11.0米(精确到0.1米)以上(含)的男生为“优秀生”.
分组(米)频数频率
[3.0,5.0)0.10
[5.0,7.0)0.10
[7.0,9.0)0.10
[9.0,11.0)0.20
[11.0,13.0)0.40
[13.0,15.0)10
合计1.00
(Ⅰ)求参加测试的男生中“优秀生”的人数;
(Ⅱ)从参加测试男生的成绩中,根据表中分组情况,按分层抽样的方法抽取10名男生的成绩作为一个样本,再从该样本中任选2名男生的成绩,求至少选出1名男生的成绩不低于13.0米的概率;
(Ⅲ)若将这次测试的频率作为概率,从该校全体男生中随机抽取3人,记X表示3人中“优秀生”的人数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案