分析 甲、乙、丙三人任意站成一排,先求出基本事件总数n=${A}_{3}^{3}=6$,再求出甲站在两端包含的基本事件个数m=${C}_{2}^{1}{A}_{2}^{2}$=4,由此能求出甲站在两端的概率.
解答 解:甲、乙、丙三人任意站成一排,
基本事件总数n=${A}_{3}^{3}=6$,
甲站在两端包含的基本事件个数m=${C}_{2}^{1}{A}_{2}^{2}$=4,
∴甲站在两端的概率是p=$\frac{m}{n}$=$\frac{4}{6}=\frac{2}{3}$.
故答案为:$\frac{2}{3}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 模型1 | B. | 模型2 | C. | 模型3 | D. | 模型4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\sqrt{5}$,+∞) | B. | [$\sqrt{5}$,2$\sqrt{5}$) | C. | [$\sqrt{3}$,+∞) | D. | [$\sqrt{3}$,2$\sqrt{5}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com