分析 先求出圆心和半径,由于点P在圆内,故当弦所在的直线和线段CP垂直时,弦长最短.求得弦所在直线的斜率,用点斜式求弦所在的直线的方程
解答 解:圆C:(x-2)2+y2=25,表示以C(2,0)为圆心,半径等于5的圆.
由于|PC|=$\sqrt{2}$<5(半径),故点P在圆内,故当弦所在的直线和线段CP垂直时,弦长最短.
此时弦所在直线的斜率为-$\frac{1}{{k}_{PC}}$=-$\frac{1}{\frac{-1-0}{3-2}}$=1.
故过P的最短弦所在的直线方程为 y+1=1×(x-3),即x-y-4=0,
故答案为:x-y-4=0.
点评 本题主要考查直线和圆相交的性质,点与圆的位置关系,用点斜式求直线的方程.判断当弦所在的直线和线段CP垂直时,弦长最短,是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | tanα | D. | -tanα |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,21008) | B. | (21008,-21008) | C. | (21009,-21009) | D. | (0,21009) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{π}$ | B. | $\frac{\sqrt{3}}{π}$ | C. | $\frac{3\sqrt{3}}{2π}$ | D. | $\frac{3\sqrt{2}}{2π}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com