精英家教网 > 高中数学 > 题目详情
14.两个变量y与x的回归模型中,分别选择了4个不同模型,对于样本点(x1,y1),(x2,y2)…,(xn,yn),可以用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{{\;}^{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$来刻画回归的效果,己知模型1中R2=0.96,模型2中R2=0.85,模型3中R2=0.55,模型4中R2=0.41,其中拟合效果最好的模型是(  )
A.模型1B.模型2C.模型3D.模型4

分析 两个变量y与x的回归模型中,它们的相关指数R2,越接近于1,这个模型的拟合效果越好,比较四个模型的相关指数R2的值,即可得答案.

解答 解:两个变量y与x的回归模型中,它们的相关指数R2,越接近于1,这个模型的拟合效果越好,
在所给的四个模型中模型1中R2=0.96是相关指数接近于1,
则拟合效果最好的模型是模型1.
故选A.

点评 本题考查相关指数的统计意义,这种题目解题的关键是理解相关指数越大拟合效果越好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列函数中,在其定义域上既是奇函数又是增函数的是(  )
A.y=2xB.y=sinxC.y=x3D.y=ln|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=Asin(ωx+φ)+B,(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)在区间($\frac{π}{2}$,$\frac{3π}{2}$)上单调,当x=$\frac{π}{2}$时,f(x)取得最大值5,当x=$\frac{3π}{2}$时,f(x)取得最小值-1,
(1)求f(x)的解析式
(2)当x∈[0,4π]时,函数g(x)=2x|f(x)|-(a+1)2x+1有8个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.甲、乙、丙三人任意站成一排,则甲站在两端的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.随着互联网的发展,移动支付(又称手机支付)越来越普遍,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15~65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有n个人,把这n个人按照年龄分成5组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),然后绘制成如图所示的频率分布直方图,其中第一组的频数为20.
(1)求n和x的值,并根据频率分布直方图估计 这组数据的众数,
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数,
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(cos75°,sin75°),$\overrightarrow{b}$=(cos15°,sin15°),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值为(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我国古代数学名著《九章算术》中记录割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2-$\frac{1}{2-\frac{1}{2-…}}$中“…”即代表无限次重复,但原式是个定制x,这可以通过方程2-$\frac{1}{x}$=x解得x=1,类比之,$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=(  )
A.$\sqrt{2}$B.-1或2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知某学生准备利用暑假时间到北京研学旅游,其乘火车、汽车、飞机去的概率分别为0.5,0.2,0.3,则这名学生不乘汽车的概率为0.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,a,b,c是内角A,B,C所对应边,a=2,b=$\sqrt{2}$,A=$\frac{π}{4}$,则角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案