精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a,b,c是内角A,B,C所对应边,a=2,b=$\sqrt{2}$,A=$\frac{π}{4}$,则角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

分析 由A的度数求出sinA的值,再由a,b的值,利用正弦定理求出sinB的值,即可确定出B的度数.

解答 解:在△ABC中,a=2,b=$\sqrt{2}$,A=$\frac{π}{4}$,a>b,则A>B,
由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{2}}{2}}{2}$=$\frac{1}{2}$,
∴B=$\frac{π}{6}$;
故选:A.

点评 此题考查了正弦定理,正弦函数的单调性,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.两个变量y与x的回归模型中,分别选择了4个不同模型,对于样本点(x1,y1),(x2,y2)…,(xn,yn),可以用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{{\;}^{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$来刻画回归的效果,己知模型1中R2=0.96,模型2中R2=0.85,模型3中R2=0.55,模型4中R2=0.41,其中拟合效果最好的模型是(  )
A.模型1B.模型2C.模型3D.模型4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平行四边形ABCD中,AB∥CD,已知AB=5,AD=3,cos∠DAB=$\frac{2}{5}$,E为DC中点,则$\overrightarrow{AC}•\overrightarrow{BE}$=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线2x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A,B,O是坐标原点,且有|$\overrightarrow{OA}$$+\overrightarrow{OB}$|$≥\frac{\sqrt{3}}{3}$|$\overrightarrow{AB}$|,那么k的取值范围是(  )
A.[$\sqrt{5}$,+∞)B.[$\sqrt{5}$,2$\sqrt{5}$)C.[$\sqrt{3}$,+∞)D.[$\sqrt{3}$,2$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=ln(x+1)-$\frac{2}{{x}^{2}}$的零点所在的大致区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(2ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{5π}{8}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,则ω的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正项数列{an}的前n项和为Sn,对任意n∈N*,an+1(an+1-2)=an(an+2)且S3=12.
(Ⅰ)证明:数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)若${b}_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用列举法可以将集合A={a|a使方程ax2+2x+1=0有唯一实数解}表示为(  )
A.A={1}B.A={0}C.A={0,1}D.A={0}或{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式组$\left\{\begin{array}{l}x+y-\sqrt{2}≤0\\ x-y+\sqrt{2}≥0\\ y≥0\end{array}\right.$所围成的平面区域的面积为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案