精英家教网 > 高中数学 > 题目详情
14.不等式组$\left\{\begin{array}{l}x+y-\sqrt{2}≤0\\ x-y+\sqrt{2}≥0\\ y≥0\end{array}\right.$所围成的平面区域的面积为(  )
A.1B.2C.3D.4

分析 作出不等式组对应的平面区域,根据对应的图形进行计算即可.

解答 解:作出不等式组对应的平面区域如图:
则阴影部分为三角形,
其中A(-$\sqrt{2}$,0),C($\sqrt{2}$,0),
由$\left\{\begin{array}{l}{x+y-\sqrt{2}=0}\\{x-y+\sqrt{2}=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=\sqrt{2}}\end{array}\right.$,即B(0,$\sqrt{2}$),
则三角形的面积S=$\frac{1}{2}$×$2\sqrt{2}×\sqrt{2}$=2,
故选:B

点评 本题主要考查三角形面积的计算,根据二元一次不等式组作出对应的平面区域是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,a,b,c是内角A,B,C所对应边,a=2,b=$\sqrt{2}$,A=$\frac{π}{4}$,则角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某校高三毕业汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,要求A、B两个节目要相邻,且都不排在第4号位置,则节目单上不同的排序方式有(  )
A.192种B.144种C.96种D.72种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.从某校随机抽取部分男生进行身体素质测试,获得掷实心球的成绩数据,整理得到数据分组及频率分布表,成绩在11.0米(精确到0.1米)以上(含)的男生为“优秀生”.
分组(米)频数频率
[3.0,5.0)0.10
[5.0,7.0)0.10
[7.0,9.0)0.10
[9.0,11.0)0.20
[11.0,13.0)0.40
[13.0,15.0)10
合计1.00
(Ⅰ)求参加测试的男生中“优秀生”的人数;
(Ⅱ)从参加测试男生的成绩中,根据表中分组情况,按分层抽样的方法抽取10名男生的成绩作为一个样本,再从该样本中任选2名男生的成绩,求至少选出1名男生的成绩不低于13.0米的概率;
(Ⅲ)若将这次测试的频率作为概率,从该校全体男生中随机抽取3人,记X表示3人中“优秀生”的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某校从高三年级中随机选取200名学生,将他们的一模数学成绩绘制成频率分布直方图(如图).由图中数据可知a=0.030.若要从成绩在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从成绩在[130,140)内的学生中选取的人数应为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$f(x)=\left\{\begin{array}{l}2x-1,x≤4\\ \frac{x}{x-1},x>4\end{array}\right.$,则不等式f(m)<4的解集为(  )
A.(-∞,4)B.(-4,2)
C.$({\frac{5}{2}_{\;}}{,_{\;}}4)$D.$(-{∞_{\;}}{,_{\;}}\frac{5}{2})∪({4_{\;}}{,_{\;}}+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)满足f($\sqrt{3}$)=-2,f′(x)>-$\sqrt{3}$,若x∈(0,π),则不等式f(2sinx)≤-4$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+1的解集(  )
A.[$\frac{π}{3}$,$\frac{2π}{3}$]B.(0,$\frac{π}{3}$]C.[$\frac{2π}{3}$,π)D.(0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-2ax(0≤x≤2)的最大值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.1-2sin275°=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案