精英家教网 > 高中数学 > 题目详情
19.已知$f(x)=\left\{\begin{array}{l}2x-1,x≤4\\ \frac{x}{x-1},x>4\end{array}\right.$,则不等式f(m)<4的解集为(  )
A.(-∞,4)B.(-4,2)
C.$({\frac{5}{2}_{\;}}{,_{\;}}4)$D.$(-{∞_{\;}}{,_{\;}}\frac{5}{2})∪({4_{\;}}{,_{\;}}+∞)$

分析 通过讨论m的范围,求出各个区间上的m的范围,取并集即可.

解答 解:$f(x)=\left\{\begin{array}{l}2x-1,x≤4\\ \frac{x}{x-1},x>4\end{array}\right.$,
若2m-1<4,解得:m<$\frac{5}{2}$,
若$\frac{m}{m-1}$<4,则$\frac{3m-4}{m-1}$>0,显然m>4时成立,
故不等式f(m)<4的解集为(-∞,$\frac{5}{2}$)∪(4,+∞),
故选:D.

点评 本题考查了分段函数问题,考查分类讨论思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(2ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{5π}{8}$,0)对称,且在区间[0,$\frac{π}{2}$]上是单调函数,则ω的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)设由三个有序数组成的集合A={(x1,x2,x3)|xi∈{-1,0,1},i=1,2,3},求集合A中满足条件“|x1|+|x2|+|x3|=2”的元素个数n;
(2)在(1)的条件下,设f(x)=(a+bx+cx2n=a0+a1x+a2x2+…+a2nx2n,若a0+a2+…+a2n=a1+a3+…+a2n-1=211,求正数a,c的积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{x^2},x>0\end{array}\right.$,若函数g(x)=f(x)-k(x-1)恰有两个零点,则实数k的取值范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-∞,-1]∪[4,+∞)C.[-1,0)∪(4,+∞)D.[-1,0)∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式组$\left\{\begin{array}{l}x+y-\sqrt{2}≤0\\ x-y+\sqrt{2}≥0\\ y≥0\end{array}\right.$所围成的平面区域的面积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题不正确的是(  )
A.若m⊥n,m⊥α,n?α则n∥αB.m∥α,α⊥β,则m⊥β
C.m⊥β,α⊥β,则m∥α或m?αD.m⊥n,m⊥α,n⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列命题正确的有0个
(1)三点确定一个平面;
(2)经过同一点的三条直线确定一个平面;
(3)设A表示点,a表示直线,α表示平面,若A∈a,A∈α,则a?α;
(4)平面α和平面β有不在同一直线上的三个公共点A,B,C;
(5)如果一条直线与两条直线都相交,那么这三条直线确定一个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=$\frac{{\sqrt{2}}}{2}$,则下列结论中正确的个数是(  )
①EF∥平面ABCD;
②平面ACF⊥平面BEF;
③三棱锥E-ABF的体积为定值;
④存在某个位置使得异面直线AE与BF成角30o
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-c=0
(Ⅰ)求A的大小
(Ⅱ)若△ABC为锐角三角形,且a=$\sqrt{3}$,求b2+c2的取值范围.

查看答案和解析>>

同步练习册答案