精英家教网 > 高中数学 > 题目详情
5.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=$\frac{{\sqrt{2}}}{2}$,则下列结论中正确的个数是(  )
①EF∥平面ABCD;
②平面ACF⊥平面BEF;
③三棱锥E-ABF的体积为定值;
④存在某个位置使得异面直线AE与BF成角30o
A.1B.2C.3D.4

分析 在①中,由EF∥BD,能推导出EF∥平面ABCD;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,从而得到面ACF⊥平面BEF;在③中,三棱锥E-ABF的体积与三棱锥A-BEF的体积相等,从而三棱锥E-ABF的体积为定值;在④中,令上底面中心为O,得到存在某个位置使得异面直线AE与BF成角30°.

解答 解:由正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=$\frac{{\sqrt{2}}}{2}$,知:
在①中,由EF∥BD,且EF?平面ABCD,BD?平面ABCD,得EF∥平面ABCD,故①正确;
在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1
而BE?面BDD1B1,BF?面BDD1B1,∴AC⊥平面BEF,
∵AC?平面ACF,∴面ACF⊥平面BEF,故②正确;
在③中,三棱锥E-ABF的体积与三棱锥A-BEF的体积相等,
三棱锥A-BEF的底面积和高都是定值,故三棱锥E-ABF的体积为定值,故③正确;
在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,
则两异面直线所成的角是∠OBC1,可求解∠OBC1=300
故存在某个位置使得异面直线AE与BF成角30°,故④正确.
故选:D.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若直线l:12x-5y+1=0与圆心为C的圆x2+4x+y2+4y-a=0交于P、Q两点,且△PQC的面积为2$\sqrt{2}$,则a等于(  )
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$f(x)=\left\{\begin{array}{l}2x-1,x≤4\\ \frac{x}{x-1},x>4\end{array}\right.$,则不等式f(m)<4的解集为(  )
A.(-∞,4)B.(-4,2)
C.$({\frac{5}{2}_{\;}}{,_{\;}}4)$D.$(-{∞_{\;}}{,_{\;}}\frac{5}{2})∪({4_{\;}}{,_{\;}}+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=f(x)是定义在无限集合D上的函数,并且满足对于任意的x∈D,f1(x)=f(x),f2(x)=f[f1(x)],…,fn(x)=f[fn-1(x)],(n≥2,n∈N).
①若y=f(x)=$\frac{1+x}{1-3x}$,则f8(1)=0;
②试写出满足下面条件的一个函数y=f(x):存在x0∈D,使得由f1(x0),f2(x0),…,fn(x0),…组成的集合有且仅有两个元素,这样的函数可以是f(x)=$\left\{\begin{array}{l}{-1,x≥0}\\{1,x<0}\end{array}\right.$(只需写出一个满足条件的函数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-2ax(0≤x≤2)的最大值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C的方程为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且离心率e=$\frac{5}{4}$,则双曲线C的渐近线方程为(  )
A.4x±y=0B.4x±3y=0C.3x±4y=0D.x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知四棱锥V-ABCD,底面ABCD是边长为2的正方形,VA⊥平面ABCD,且VA=4,则此四棱锥的侧面中,所有直角三角形的面积的和是8+4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,中心为O,若椭圆过点P(-$\frac{1}{2}$,$\frac{1}{2}$),且AP⊥PO.
(1)求椭圆M的方程;
(2)过点P作两条斜率分别为k1,k2的直线交椭圆M于D、E两点,且k1+k2=0,求证:直线DE的斜率为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,a,b,c分别为内角的对边,若a=$\sqrt{3}$,A=$\frac{π}{3}$,b=$\sqrt{2}$,则B=(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案