精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x2-2ax(0≤x≤2)的最大值为g(a),求g(a)的表达式.

分析 利用函数的对称轴以及开口方向,通过a的范围,最大值为g(a),求出g(a)的表达式.

解答 解:函数f(x)=x2-2ax的对称轴x=a,开口向上,
当a≤1时,最大值为g(a)=f(2)=4-4a,
当a>1时,最大值为g(a)=f(0)=0,
∴g(a)的表达式:g(a)=$\left\{\begin{array}{l}{4-4a,a≤1}\\{0,a>1}\end{array}\right.$.

点评 本题考查了函数的对称性,单调性,奇偶性,综合运用解决问题,难度较小,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.用列举法可以将集合A={a|a使方程ax2+2x+1=0有唯一实数解}表示为(  )
A.A={1}B.A={0}C.A={0,1}D.A={0}或{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式组$\left\{\begin{array}{l}x+y-\sqrt{2}≤0\\ x-y+\sqrt{2}≥0\\ y≥0\end{array}\right.$所围成的平面区域的面积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列命题正确的有0个
(1)三点确定一个平面;
(2)经过同一点的三条直线确定一个平面;
(3)设A表示点,a表示直线,α表示平面,若A∈a,A∈α,则a?α;
(4)平面α和平面β有不在同一直线上的三个公共点A,B,C;
(5)如果一条直线与两条直线都相交,那么这三条直线确定一个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图(1)所示,边长为2a的正方形ABCD中,点E,F分别为边AB,BC的中点,沿DE,DF将△ADE,△DCF折起,使得A,C两点重合于一点P.得到一个四棱锥P-EBFD(如图(2)所示),连按EF,BD.
(I)证明:EF⊥平面PBD;
(Ⅱ)已知$\overrightarrow{PM}$=λ$\overrightarrow{PD}$(0≤λ≤1),当平面MEF与平面DEF所成角的余弦值为$\frac{\sqrt{6}}{3}$时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=$\frac{{\sqrt{2}}}{2}$,则下列结论中正确的个数是(  )
①EF∥平面ABCD;
②平面ACF⊥平面BEF;
③三棱锥E-ABF的体积为定值;
④存在某个位置使得异面直线AE与BF成角30o
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在正方体的八个顶点中,有四个恰好是正四面体(四个面都是正三角形的三棱锥)的顶点,则正方体的表面积与此正四面体的表面积的比值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.先后掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x≠y”,则概率P(B|A)=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在[0,2π]上随机取一个值α,使得关于x的方程x2-4x•sinα+1=0有实根的概率为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案