精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A、B、C的对边分别为a、b、c,若△ABC的面积等于3asinB,则c=6.

分析 由已知及三角形面积公式即可计算得解.

解答 解:∵由题意可得:S△ABC=$\frac{1}{2}$acsinB=3asinB,
又∵sinB>0,a>0,
∴$\frac{1}{2}$c=3,解得:c=6.
故答案为:6.

点评 本题主要考查了三角形面积公式在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且$f({-\frac{1}{2}+x})=f({-\frac{1}{2}-x})$.
(I)求函数f(x)的表达式;
(II)令g(x)=f(x)-|λx-1|(λ>0),研究函数g(x)在区间(0,1)上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下表是数据x,y的记录,其中y关于x的线性回归方程是$\widehat{y}$=0.6x+0.3,那么表中t的值是1.
 3 5
 2.54.5 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.随着互联网的发展,移动支付(又称手机支付)越来越普遍,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15~65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有n个人,把这n个人按照年龄分成5组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),然后绘制成如图所示的频率分布直方图,其中第一组的频数为20.
(1)求n和x的值,并根据频率分布直方图估计 这组数据的众数,
(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数,
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.平面几何中有如下结论:若在三角形ABC的内切圆的半径为r1,外接圆的半径为r2,则$\frac{{r}_{1}}{{r}_{2}}$=$\frac{1}{2}$.推广到空间,可以得到类似结论;若正四面体P-ABC(所有棱长都相等的四面体叫正四面体)的内切球半径为R1,外接球半径为R2,则$\frac{{R}_{1}}{{R}_{2}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我国古代数学名著《九章算术》中记录割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2-$\frac{1}{2-\frac{1}{2-…}}$中“…”即代表无限次重复,但原式是个定制x,这可以通过方程2-$\frac{1}{x}$=x解得x=1,类比之,$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=(  )
A.$\sqrt{2}$B.-1或2C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(3,0),则|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=2sin(ωx+φ)对任意的x∈R,都有f($\frac{π}{3}$-x)=f(x).若函数g(x)=cos(ωx+φ)-1,则g($\frac{π}{6}$)的值是(  )
A.-2B.-1C.-$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若直线y=mx与函数y=$\frac{|x|-1}{|x-1|}$的图象没有公共点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案