精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且$f({-\frac{1}{2}+x})=f({-\frac{1}{2}-x})$.
(I)求函数f(x)的表达式;
(II)令g(x)=f(x)-|λx-1|(λ>0),研究函数g(x)在区间(0,1)上的零点个数.

分析 (Ⅰ)求出c=0,函数对于任意x∈R都有 $f({-\frac{1}{2}+x})=f({-\frac{1}{2}-x})$,可得函数f(x)的对称轴从而可得a=b,结合f(x)≥x,即ax2+(b-1)x≥0对于任意x∈R都成立,可转化为二次函数的图象可得a>0,且△=(b-1)2≤0.
(Ⅱ)求出g(x)的解析式,通过了λ的范围,结合二次函数的性质判断即可.

解答 解:(Ⅰ)∵f(0)=0,∴c=0,
∵对于任意x∈R都有f(-$\frac{1}{2}$+x)=f(-$\frac{1}{2}$-x),
∴函数f(x)的对称轴为x=-$\frac{1}{2}$,即-$\frac{b}{2a}$=-$\frac{1}{2}$,得a=b,
又f(x)≥x,即ax2+(b-1)x≥0对于任意x∈R都成立,
∴a>0,且△=(b-1)2≤0.
∵(b-1)2≥0,∴b=1,a=1.
∴f(x)=x2+x.(4分)
(Ⅱ)g(x)=f(x)-|λx-1|=$\left\{\begin{array}{l}{{x}^{2}+(1-λ)x+1,x≥\frac{1}{λ}}\\{{x}^{2}+(1+λ)x-1,x<\frac{1}{λ}}\end{array}\right.$,
①当x≥$\frac{1}{λ}$时,函数g(x)=x2+(1-λ)x+1的对称轴为x=$\frac{λ-1}{2}$,
若 $\frac{λ-1}{2}$≤$\frac{1}{λ}$,即0<λ≤2,函数g(x)在($\frac{1}{λ}$,+∞)上单调递增,
函数g(x)在区间(0,1)上单调递增,
又g(0)=-1<0,g(1)=2-|λ-1|>0,
故函数g(x)在区间(0,1)上只有一个零点.
若$\frac{λ-1}{2}$>$\frac{1}{λ}$,即λ>2时,函数g(x)在($\frac{λ-1}{2}$,+∞)上单调递增,在($\frac{1}{λ}$,$\frac{λ-1}{2}$)上单调递减.
由$\frac{1}{λ}$<$\frac{1}{2}$<1,而g(0)=-1<0,g($\frac{1}{λ}$)=$\frac{1}{{λ}^{2}}$+$\frac{1}{λ}$>0,g(1)=2-|λ-1|,
(ⅰ)若2<λ≤3,由于$\frac{1}{λ}$<$\frac{λ-1}{2}$≤1,且g($\frac{λ-1}{2}$ )=-$\frac{{(λ-1))}^{2}}{4}$+1≥0,
此时,函数g(x)在区间(0,1)上只有一个零点;
(ⅱ)若λ>3,由于 $\frac{λ-1}{2}$>1且g(1)=2-|λ-1|<0,
此时,函数g(x)在区间(0,1)上有两个不同的零点;
综上所述,当0<λ≤3时,函数g(x)在区间(0,1)上只有一个零点;
当λ>3时,函数g(x)在区间(0,1)上有两个不同的零点.

点评 本题主要考查了函数的解析式的求解,函数的单调区间,零点存在的判定定理,考查了分类讨论思想的在解题中的应用.属于综合性较强的试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知直线m,n和平面α,满足m?α,n?α.则“m∥n”是“m∥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中为真命题的是(  )
A.实数不是复数B.3+i的共轭复数是-3-i
C.1+$\sqrt{3}i$不是纯虚数D.z$\overline{z}$=z2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(cosα,sinα),设$\overrightarrow{m}$=$\overrightarrow{a}$+t$\overrightarrow{b}$(t∈R).
(1)若α=$\frac{π}{4}$,求|$\overrightarrow{m}$|最小值;
(2)若向量$\overrightarrow{a}$⊥$\overrightarrow{b}$,且$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{m}$夹角的余弦值为$\frac{2}{3}$,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给定函数①$y={x^{\frac{1}{2}}}$,②$y=\frac{1}{x}$,③y=|x|-1,④$y=cos(\frac{π}{2}-x)$,其中既是奇函数又在区间(0,1)上是增函数的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$sin(α+\frac{13π}{6})+cosα=-\frac{1}{3}$,则$cos(\frac{π}{6}-α)$=(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{{\sqrt{3}}}{9}$D.$\frac{{\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若将函数y=8sin2x的图象向左平移φ(φ>0)个单位长度,得到的函数图象关于原点对称,则cos4φ+sin4φ=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆x2+y2=r2(r>0)的内接四边形的面积的最大值为2r2,类比可得椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的内接四边形的面积的最大值为2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A、B、C的对边分别为a、b、c,若△ABC的面积等于3asinB,则c=6.

查看答案和解析>>

同步练习册答案