精英家教网 > 高中数学 > 题目详情
8.已知$sin(α+\frac{13π}{6})+cosα=-\frac{1}{3}$,则$cos(\frac{π}{6}-α)$=(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{{\sqrt{3}}}{9}$D.$\frac{{\sqrt{3}}}{9}$

分析 利用两角和的正弦公式求得化简所给的式子求得sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{3}}{9}$,再利用诱导公式求得 $cos(\frac{π}{6}-α)$=sin[$\frac{π}{2}$-($\frac{π}{6}$-α)]的值.

解答 解:∵已知$sin(α+\frac{13π}{6})+cosα=-\frac{1}{3}$,
即 sin(α+$\frac{π}{6}$)+cosα=$\frac{\sqrt{3}}{2}$sinα+$\frac{1}{2}$cosα+cosα=$\sqrt{3}$($\frac{1}{2}$sinα+$\frac{\sqrt{3}}{2}$cosα)
=$\sqrt{3}$sin(α+$\frac{π}{3}$)=-$\frac{1}{3}$,
∴sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{3}}{9}$,
则$cos(\frac{π}{6}-α)$=sin[$\frac{π}{2}$-($\frac{π}{6}$-α)]=sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{3}}{9}$,
故选:C.

点评 本题主要考查两角和的正弦公式,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.m=2018是直线mx+(m-2017)y-2=0和直线x-my+5=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.化简$\sqrt{2}$sin(x+$\frac{π}{2}$)+$\sqrt{6}$sin(π-x)的结果为(  )
A.2$\sqrt{2}$sin(x+$\frac{π}{6}$)B.2$\sqrt{2}$sin(x+$\frac{π}{3}$)C.2$\sqrt{2}$cos(x+$\frac{π}{6}$)D.2$\sqrt{2}$cos(x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,在其定义域上既是奇函数又是增函数的是(  )
A.y=2xB.y=sinxC.y=x3D.y=ln|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且$f({-\frac{1}{2}+x})=f({-\frac{1}{2}-x})$.
(I)求函数f(x)的表达式;
(II)令g(x)=f(x)-|λx-1|(λ>0),研究函数g(x)在区间(0,1)上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若向量$\overrightarrow{a}$,$\overrightarrow{b}$共线,则一定存在实数λ,使得$\overrightarrow{a}$=$λ\overrightarrow{b}$.错(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.奇函数f(x)的定义域为R,函数g(x)=x2+f(x-1)+f(x+1),若g(1)=4,则g(-1)的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=Asin(ωx+φ)+B,(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)在区间($\frac{π}{2}$,$\frac{3π}{2}$)上单调,当x=$\frac{π}{2}$时,f(x)取得最大值5,当x=$\frac{3π}{2}$时,f(x)取得最小值-1,
(1)求f(x)的解析式
(2)当x∈[0,4π]时,函数g(x)=2x|f(x)|-(a+1)2x+1有8个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.我国古代数学名著《九章算术》中记录割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2-$\frac{1}{2-\frac{1}{2-…}}$中“…”即代表无限次重复,但原式是个定制x,这可以通过方程2-$\frac{1}{x}$=x解得x=1,类比之,$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=(  )
A.$\sqrt{2}$B.-1或2C.2D.4

查看答案和解析>>

同步练习册答案