精英家教网 > 高中数学 > 题目详情
15.m=2018是直线mx+(m-2017)y-2=0和直线x-my+5=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据直线垂直的等价条件求出a的范围,结合充分条件和必要条件的定义进行判断即可.

解答 解:若直线mx+(m-2017)y-2=0和直线x-my+5=0垂直,
则m-m(m-2017)=0,
得m(1-m+2017)=0,
即m(m-2018)=0,
得m=0或m=2018,
则m=2018是直线mx+(m-2017)y-2=0和直线x-my+5=0垂直的充分不必要条件,
故选:A

点评 本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某市从2011年起每年在国庆期间都举办一届国际水上狂欢节,该市旅游部门将前五届水上狂欢节期间外地游客到该市旅游的人数统计如下表:
年份20112012201320142015
水上狂欢节编号x12345
外地游客人数y(单位:十万)0.60.80.91.21.5
(1)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$ 
(2)该市旅游部门估计,每位外地游客可为该市增加100元的旅游收入,请你利用(1)的线性回归方程,预测2017年第七届国际水上狂欢节期间外地游客可为该市增加多少旅游收入?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x}){\;}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.甲、乙、丙、丁四位歌手参加比赛,只有其中一位获奖,有人走访了四位歌手,甲说:“是丙获奖”.乙说:“是丙或丁获奖”.丙说:“乙、丁都未获奖”.丁说:“我获奖了”.四位歌手的话只有两句是对的,则获奖的歌手是丁.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设$\overrightarrow a,\overrightarrow b$都是非零向量,下列四个条件中,一定能使$\frac{\overrightarrow a}{|\overrightarrow a|}+\frac{\overrightarrow b}{|\overrightarrow b|}=0$成立的是(  )
A.$\overrightarrow a⊥\overrightarrow b$B.$\overrightarrow a$∥$\overrightarrow b$C.$\overrightarrow a=2\overrightarrow b$D.$\overrightarrow a=-\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线m,n和平面α,满足m?α,n?α.则“m∥n”是“m∥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.把下列角化成2kπ+α(0≤α≤2π,k∈Z)形式,写出终边相同的角的集合,并指出它是第几象限角.
(1)-$\frac{46π}{3}$;(2)-1485°;(3)-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出以下三个命题:
①若ab≤0,则a≤0,b≤0;
②在ABC中,若sinA=sinB,则A=B;
③在一元二次方程ax2+bx+c=0中,若b2-4ac>0,则方程有实数根.
其中原命题、逆命题、否命题、逆否命题全都是真命题的是(  )
A.B.C.D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆的半径为π,则60°圆心角所对的弧长为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{{π}^{2}}{3}$D.$\frac{2{π}^{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$sin(α+\frac{13π}{6})+cosα=-\frac{1}{3}$,则$cos(\frac{π}{6}-α)$=(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{{\sqrt{3}}}{9}$D.$\frac{{\sqrt{3}}}{9}$

查看答案和解析>>

同步练习册答案