精英家教网 > 高中数学 > 题目详情
如图正方形ABCD的边长为ABCD的边长为2
2
,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=
3
,且FO⊥平面ABCD.
(Ⅰ)求证:AE∥平面BCF;
(Ⅱ)求证CF⊥平面AEF.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)取BC中点H,连结OH,则OH∥BD,由正方形性质得AC⊥BD,从而OH⊥AC,以O为原点,建立直角坐标系,利用向量法能证明AE∥平面BCF.
(Ⅱ)求出
CF
AF
=-3+3=0,
CF
AE
=-3+3=0,可得
CF
AF
CF
AE
,由此能证明CF⊥平面AEF.
解答: (Ⅰ)证明:取BC中点H,连结OH,则OH∥BD,
又四边形ABCD为正方形,∴AC⊥BD,
∴OH⊥AC,∴以O为原点,建立如图所示的直角坐标系,
则A(3,0,0),E(1,-2,0),C(-1,0,0),
D(1,-2,0),F(0,0,
3
),
BC
=(-2,-2,0),
CF
=(1,0,
3
),
BF
=(-1,-2,
3
),
设平面BCF的法向量为
n
=(x,y,z),
-2x-2y=0
x+
3
z=0
,取z=1,得
n
=(-
3
3
,1),
又四边形BDEF为平行四边形,
DE
=
BF
=(-1,-2,
3
),
AE
=
AD
+
DE
=
BC
+
DE
=(-2,-2,0)+(-1,-2,
3
)=(-3,-3,
3
),
AE
n
=3
3
-4
3
+
3
=0,
∴AE
n
,又AE?平面BCF,∴AE∥平面BCF.
(Ⅱ)证明:
AF
=(-3,0,
3
),
CF
AF
=-3+3=0,
CF
AE
=-3+3=0,
CF
AF
CF
AE

又AE∩AF=A,∴CF⊥平面AEF.
点评:本题考查线面平行、线面垂直的证明,是中档题,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在?ABCD中,E是AD上的一点,且AE=AB,BE和CD的延长线交于点F,且∠BFC=35°,求?ABCD的各内角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点是抛物线y2=8x焦点F,两曲线的一个公共点为P,且|PF|=5,则此双曲线的离心率为(  )
A、
5
2
B、
5
C、2
D、
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其导函数为f′(x),当x<0时,2f(x)+xf′(x)<0恒成立,则f(1),2014f(
2014
)
,2015f(
2015
)
在大小关系为(  )
A、2015f(
2015
)
<2014f(
2014
)
<f(1)
B、2015f(
2015
)
<f(1)<2014f(
2014
)
C、f(1)<2015f(
2015
)
<2014f(
2014
)
D、f(1)<2014f(
2014
)
<2015f(
2015
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=5,|
.
b
|=4,
a
b
的夹角θ=
3
,则向量
b
在向量
a
上的投影为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c满足2
AB
AC
=a2-(b+c)2,求∠A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C1:(x+1)2+(y-6)2=25,圆C2:(x-17)2+(y-30)2=r2.若圆C2上存在一点P,使得过点P可作一条射线与圆C1依次交于点A、B,满足PA=2AB,则半径r的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过P(sin
6
,cos
6
),则α可能是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(sin
α
2
+cos
α
2
2+2sin2
π
4
-
α
2
)的值等于
 

查看答案和解析>>

同步练习册答案