精英家教网 > 高中数学 > 题目详情
如图,在?ABCD中,E是AD上的一点,且AE=AB,BE和CD的延长线交于点F,且∠BFC=35°,求?ABCD的各内角的度数.
考点:相似三角形的性质
专题:选作题,立体几何
分析:利用?ABCD中,E是AD上的一点,且AE=AB,∠BFC=35°,可得∠ABE=∠AEB=35°,即可求?ABCD的各内角的度数.
解答: 解:∵?ABCD中,E是AD上的一点,且AE=AB,∠BFC=35°,
∴∠ABE=∠AEB=35°,
∴∠A=110°,
∴∠C=110°,∠ABC=∠ADC=70°.
点评:本题考查求?ABCD的各内角的度数,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则这个几何体的体积是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx,其中,m∈R,函数f(x)在(1,0)处的切线斜率为0.
(1)求函数f(x)的解析式;
(2)已知函数f(x)的图象与直线y=k2-2k无公共点,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,
3
a
+
1
b
=2,求a+b-
a2+b2
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(θ)=
2cos3(2π-θ)+sin2(π+θ)+cos(-θ)-3
2+2cos2(π-θ)+sin(
π
2
+θ)
,求f(
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=(2n-1)•3n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)2sin0°+5sin90°-3sin270°+10sin180°;
(2)sin
π
6
-
2
sin
π
4
+
4
3
sin2
π
3
+sin2
π
6
+sin
2

(3)cos0°+5sin90°-3sin270°+10cos180°;
(4)cos
π
3
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
+cos2
π
6
+sin
2

(5)sin4
π
4
-cos2
π
2
+6tan3
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2x,若数列{an}的各项使得2,f(a1),f(a2),f(a3),…,f(an),2n+4成等差数列,则数列{an}的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD的边长为ABCD的边长为2
2
,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=
3
,且FO⊥平面ABCD.
(Ⅰ)求证:AE∥平面BCF;
(Ⅱ)求证CF⊥平面AEF.

查看答案和解析>>

同步练习册答案