精英家教网 > 高中数学 > 题目详情
已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c满足2
AB
AC
=a2-(b+c)2,求∠A的大小.
考点:余弦定理,正弦定理
专题:解三角形
分析:利用数量积运算、余弦定理即可得出.
解答: 解:∵2
AB
AC
=a2-(b+c)2
∴2cbcosA=-(b2+c2-a2+2bc)=-2bccosA-2bc,
化为cosA=-
1
2
,∵A∈(0,π).
A=
3
点评:本题考查了数量积运算、余弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,an=(2n-1)•3n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=3,∠A=60°,点H是△ABC的垂心,设存在实数λ,μ,使
AH
AB
AC
,则(  )
A、λ=
1
6
,μ=
5
9
B、λ=
2
9
,μ=
4
9
C、λ=
1
3
,μ=
5
9
D、λ=
1
6
,μ=
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点,P,Q为圆上动点,角PBQ=90°,求线段PQ中点轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD的边长为ABCD的边长为2
2
,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=
3
,且FO⊥平面ABCD.
(Ⅰ)求证:AE∥平面BCF;
(Ⅱ)求证CF⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
a
x2-2x-b(a
1
2

(1)若f(x)在[2,+∞)上是单调函数,求a的取值范围;
(2)若f(x)在[-2,3]上的最大值为6,最小值为-3,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:2x-3y=0,l2:x-y-3=0,l3:3x+y-25=0,l4:y-x-5=0
(1)求过l1,l2的交点且与l3垂直的直线方程;
(2)求直线l1,l2的交点到直线l3的距离;
(3)求直线l2,l4之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
1+2sin(3π-α)cos(α-3π)
sin(α-
2
)-
1-sin2(
2
+α)
,其中角α在第二象限;
(2)已知α是第三象限角,化简
1+sinα
1-sinα
-
1-sinα
1+sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,E,F,H∈R且满足
a+b+c=E
ab+bc+ca=F
abc=H
问是否能用E,F,H表示a,b,c即用含E,F,H的代数式分别表示a,b,c能写出过程及答案,若不能说明理由.

查看答案和解析>>

同步练习册答案