精英家教网 > 高中数学 > 题目详情
5.过抛物线y2=8x的焦点F的直线交抛物线A(x1,y1),B(x2,y2)两点,若x1+x2=5,则|AB|=9.

分析 法1:容易求出抛物线的焦点F的坐标为(2,0),而由题意可看出直线存在斜率且不为0,可设直线的斜率为k,写出方程为y=k(x-2),带入抛物线方程整理便可得到k2x2-(4k2+8)+4k2=0,由韦达定理即可求出x1+x2和x1x2,根据x1+x2=5即可求出k2的值,从而根据弦长公式即可求出|AB|的值.法2:根据抛物线方程知,p=4,根据抛物线的定义可得答案.

解答 解:法1:抛物线y2=8x的焦点F(2,0),由题意知,过F的直线存在斜率且不为0,设斜率为k,则直线方程为:y=k(x-2);
带入抛物线方程并整理得:k2x2-(4k2+8)x+4k2=0;
∴${x}_{1}+{x}_{2}=\frac{4{k}^{2}+8}{{k}^{2}}=5$,x1x2=4;
∴k2=8;
∴$|AB|=\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{9}•\sqrt{25-16}=9$.
法2:根据抛物线方程知,p=4;
∴根据抛物线的定义得|AB|=x1+x2+p=5+4=9.
故答案为:9.

点评 考查抛物线的标准方程,抛物线的焦点,以及直线的点斜式方程,韦达定理,弦长公式,注意要说明k存在且不为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.命题p:实数x满足x2-5ax+6a2<0,其中a<0,命题q:实数x满足x2-x-2≤0或x2+3x-10>0,且非p是非q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{{\begin{array}{l}{x-1,x≥4}\\{f(f(x+2)),x<4}\end{array}}$,则f(3)=(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x={t}^{2}}\\{y=2t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin($\frac{π}{4}$-θ)=$\frac{\sqrt{2}}{2}$.
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)若曲线C1和C2相交于两点A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为(  )
A.2B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,多面体A1B1D1DCBA是长方体A1B1C1D-ABCD被平面B1CD1截去一个三棱锥后所得的几何体,M为B1D1的中点,过A1、D、M的平面交CD1于点N.
(1)证明:MN∥B1C;
(2)若AB=AD=2,AA1=4,求二面角A-MN-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F与抛物线y2=4$\sqrt{3}$x的焦点重合,短轴的下、上两个端点分别为B1,B2,且$\overrightarrow{F{B}_{1}}$$•\overrightarrow{F{B}_{2}}$=a.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m(km<0)与椭圆C交于M,N两点,AB是椭圆C经过原点O的弦,AB∥l,且$\frac{|AB{|}^{2}}{|MN|}$=4,问是否存在直线l,使得$\overrightarrow{OM}$$•\overrightarrow{ON}$=2?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=-2cosx-x在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设O为正六边形ABCDEF的中心,在如图所示标出的向量中,与$\overrightarrow{FE}$共线的向量有$\overrightarrow{OA}$和$\overrightarrow{BC}$.

查看答案和解析>>

同步练习册答案