精英家教网 > 高中数学 > 题目详情
12.若tanθ=2,则$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值为(  )
A.0B.1C.$\frac{3}{4}$D.$\frac{5}{4}$

分析 将所求分子分母同除cosθ,利用同角三角函数基本关系式化简,代入tanθ=2,即可得到选项.

解答 解:∵tanθ=2,
∴$\frac{2sinθ-cosθ}{sinθ+2cosθ}$=$\frac{2tanθ-1}{tanθ+2}$=$\frac{2×2-1}{2+2}$=$\frac{3}{4}$.
故选:C.

点评 本题是基础题,考查同角三角函数基本关系式的应用,已知函数值求表达式的其它函数值,考查计算能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数f(x)是定义在R上的偶函数,在(-∞,0)上对任意两个不相等的实数a,b总有$\frac{f(a)-f(b)}{a-b}$>0,且f(2)=0,则使xf(x)<0的x的取值范围是(  )
A.-2<x<2B.x>2或-2<x<0C.-2<x<0D.x<-2或x>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图程序输出结果为16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的前n项和为Sn,且S5=25,a7=13,数列{bn}的前n项和为Tn,Tn=2bn-1.
(1)求数列{an}和{bn}的通项公式;
(2)若cn=$\frac{a_n}{b_n}$,求数列{cn}的前n项和Qn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题:“对任意 x>0,ex>x+1”的否定是(  )
A.存在 x≤0,ex≤x+1B.存在 x>0,ex≤x+1
C.存在 x≤0,ex>x+1D.对任意 x>0,ex≤x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在(0,+∞)上的函数f(x)满足对?a,b∈(0,+∞)都有f(ab)=f(a)+f(b),且当x>1时,f(x)<0.
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的单调性并证明;
(Ⅲ)若f(3)=-1,解不等式f(x)+f(x-8)>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,E,F分别是PC,AB的中点.
(1)求证:DF⊥PB;
(2)求三棱锥P-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.U={x|x≥-1},A={x|1<x≤3},B={x|2<x≤4},求A∪B,A∩B,A∩(∁UB),B∩(∁UA).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}(n∈N*)的前n项和为Sn,且a3=5,S3=9.
(1)求数列{an}的通项公式;
(2)设等比数列{bn}(n∈N*),{bn}的前n项和为Tn,若q>0且b3=a5,T3=13,求Tn
(3)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案