精英家教网 > 高中数学 > 题目详情
1.U={x|x≥-1},A={x|1<x≤3},B={x|2<x≤4},求A∪B,A∩B,A∩(∁UB),B∩(∁UA).

分析 根据交集、并集与补集的定义进行计算即可.

解答 解:U={x|x≥-1},A={x|1<x≤3},B={x|2<x≤4},
A∪B={x|1<x≤4},
A∩B={x|2<x≤3},
UB={x|-1≤x≤2或x>4},
A∩(∁UB)={x|1<x≤2},
UA={x|x≤1或x>3},
B∩(∁UA)={x|3<x≤4}.

点评 本题考查了交集、并集和补集的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如果一个数列的前5项分别是1,2,3,4,5,则下列说法正确的是(  )
A.该数列一定是等差数列B.该数列一定不是等差数列
C.该数列不一定是等差数列D.以上结论都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若tanθ=2,则$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值为(  )
A.0B.1C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若F1、F2是椭圆$\frac{x^2}{16}$+$\frac{y^2}{9}$=1的两个焦点,过F1作直线与椭圆交于A、B,则△ABF2的周长为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.
商品名称ABCDE
销售额x(千万元)35679
利润额y(百万元)23345
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.参考公式:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(3)当销售额为4(千万元)时,估计利润额的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“若a2+b2=0,则a=0或b=0”的否命题是(  )
A.若a≠0或b≠0,则a2+b2≠0B.若a2+b2≠0,则a≠0且b≠0
C.若a=0且b=0,则 a2+b2≠0D.若a2+b2≠0,则a≠0或b≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=cos(π+x)cos($\frac{3}{2}$π-x)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(I)求f(x)的最小正周期和最大值;
(II) 求f(x)在[$\frac{π}{6}$,$\frac{2}{3}$π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC的外接圆半径为1,圆心为O,且满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则$\overrightarrow{AB}$•$\overrightarrow{OC}$=(  )
A.-$\frac{15}{16}$B.-$\frac{7}{16}$C.$\frac{7}{16}$D.$\frac{15}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC 中,A=30°,a=3,b=4,那么满足条件的△ABC 个数有(  )
A.不存在B.不能确定C.一个D.两个

查看答案和解析>>

同步练习册答案