精英家教网 > 高中数学 > 题目详情
10.函数y=-x2+6x-1的单调递减区间为[3,+∞).

分析 求二次函数y=-x2+6x-1的对称轴,根据二次函数的单调性即可写出其单调递减区间.

解答 解:二次函数y=-x2+6x-1的对称轴为x=3;
∴该函数的单调递减区间为[3,+∞).
故答案为:[3,+∞).

点评 考查二次函数的对称轴,二次函数的单调性及单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的函数f(x)都有f(-x)=f(x),且满足f(x+2)=f(x-2).若当x∈(0,2)时,f(x)=lg(x+1),则有(  )
A.f($\frac{7}{2}$)>f(1)>f(-$\frac{3}{2}$)B.f(-$\frac{3}{2}$)$>f(1)>f(\frac{7}{2})$C.f(1)$>f(-\frac{3}{2})>f(\frac{7}{2})$D.f(-$\frac{3}{2}$)>f($\frac{7}{2}$)>f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下面四个命题中,
①复数z=a+bi,则实部、虚部分别是a,b;
②复数z满足|z+1|=|z-2i|,则z对应的点集合构成一条直线;
③由向量$\overrightarrow a$的性质${|{\overrightarrow a}|^2}={\overrightarrow a^2}$,可类比得到复数z的性质|z|2=z2
④i为虚数单位,则1+i+i2+…+i2015=i.
正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k,(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围为(  )
A.RB.[-4,0]C.[9,33]D.[-33,-9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=alnx-2x,g(x)=x2-(2-a)x-(2-a)lnx,其中a∈R.
(1)判断f(x)单调性;
(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(3)若F(x)=f(x)-g(x)函数存在两个零点m、n,且2x0=m+n,问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在直径AB为2的圆上有长度为1的动弦CD,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的取值范围是[-$\frac{3}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的前n项和为Sn,首项a1=-$\frac{2}{3}$,且满足Sn+$\frac{1}{S_n}+2={a_n}$(n≥2),则S2015等于(  )
A.$-\frac{2013}{2014}$B.$-\frac{2014}{2015}$C.$-\frac{2015}{2016}$D.$-\frac{2016}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*
(1)求数列{an}的通项公式;
(2)记数列{bn}满足an=4log2bn+3,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.李克强总理4月22日(世界读书日前一天)在厦门大学考察时,指出世界读书日虽然只有一天,但我们应该天天读书,这种好习惯会让我们终身受益.
某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生进行调查.右侧是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均阅读时间
不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
(Ⅰ)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
非读书迷读书迷总计
15
45
总计
P(K2≥k10.1000.0500.0100.001
k12.7063.8416.63510.828
(Ⅱ)将频率视为概率,现从该校大量学生中用随机抽样的方法每次抽取1人,共抽取5次,记被抽取的5人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的数学期望EX和方差DX.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案