精英家教网 > 高中数学 > 题目详情
求函数f(x)=
x-2
5-x
 的奇偶性.
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:先求出函数的定义域,根据函数奇偶性的定义进行判断即可.
解答: 解:要使函数有意义,则
x-2≥0
5-x≥0

x≥2
x≤5

∴2≤x≤5,
即函数的定义域为[2,5],
∵函数的定义域关于原点不对称,
∴函数f(x)为非奇非偶函数.
点评:本题主要考查函数奇偶性的判断,先求出函数的定义域,判断函数定义域是否关于原点对称是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

an=
n
0
(2x+1)dx
,数列{
1
an
}
的前项和为Sn,数列{bn}的通项公式为bn=n-8,则bnSn的最小值为(  )
A、-4B、-3C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD的顶点分别是A(3,-1,2)、B(1,2,-1)、C(-1,1,-3)、D(3,-5,3),求证:四边形ABCD是一个梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
1-x
1+x
,若函数g(x)=f(x)-x-m在[0,
9
11
]上恒有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(ax)-2lg(x-1),求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=-x2+ax-2(e≈2.71,a∈R).
(Ⅰ)判断曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)的公共点个数;
(Ⅱ)当x∈[
1
e
,e]
时,若函数y=f(x)-g(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+px-2q=0},B={x|x2+qx-4q2+2p=0},试判断“实数p=q=1”是“1∈A∩B”的什么条件,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos2x+2
3
sinxcosx+a(a∈R),若当x∈[
π
4
π
2
]时,f(x)的最大值为2+
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用函数性质比较下来各式的大小:
(1)logab
 
logba;
(2)loga
1
b
 
logb
1
a
(其中0<a<1<b且ab>1).

查看答案和解析>>

同步练习册答案