精英家教网 > 高中数学 > 题目详情

(满分12分) 已知函数.
(Ⅰ)求函数的反函数解析式;
(Ⅱ)判断函数的奇偶性;
(III)当时,解不定式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(10分)已知函数.
(1)求实数的范围,使在区间上是单调函数。 (2)求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若且对任意实数均有成立,求的表达式;
(2)在(1)条件下,当是单调递增,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
记函数的定义域为A, (<1) 的定义域为B.
(1) 求A;
(2) 若BA, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知定义域为[0, 1]的函数fx)同时满足:
①对于任意的x[0, 1],总有fx)≥0;
f(1)=1; 
③若0≤x1≤1, 0≤x2≤1, x1x2≤1, 则有fx1x2) ≥ fx1)+fx2).
(1)试求f(0)的值;
(2)试求函数fx)的最大值;
(3)试证明:当x, nN时,fx)<2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数的定义域为,当时,,且对任意的实数,有
(Ⅰ)求,判断并证明函数的单调性;
(Ⅱ)数列满足,且
①求通项公式的表达式;
②令,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
若函数的定义域和值域均为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分.)
已知函数,试判断函数在(0,+∞)上的单调性,并加以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的最大值.

查看答案和解析>>

同步练习册答案