精英家教网 > 高中数学 > 题目详情

(本题满分12分)
设函数的定义域为,当时,,且对任意的实数,有
(Ⅰ)求,判断并证明函数的单调性;
(Ⅱ)数列满足,且
①求通项公式的表达式;
②令,试比较的大小,并加以证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数f(x)=-x2+ax-lnx(a∈R).
(1)求函数f(x)既有极大值又有极小值的充要条件;
(2)当函数f(x)在[,2]上单调时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)判断函数的单调性,并简要说明理由,不需要用定义证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文)已知函数(b、c为常数).
(1)若处取得极值,试求的值;
(2)若上单调递增,且在上单调递减,又满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
如图,点点出发,按着的速率沿着边长为正方形的边运动,到达点后停止,

面积与时间的函数关系式并画出函数图像。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数.
(Ⅰ)令,求关于的函数关系式,并写出的范围;
(Ⅱ)求该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立.
(1)试判断函数是否属于集合?请说明理由;
(2)设函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1) 用函数单调性的定义证明在区间上为增函数
(2) 解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分) 已知函数.
(Ⅰ)求函数的反函数解析式;
(Ⅱ)判断函数的奇偶性;
(III)当时,解不定式.

查看答案和解析>>

同步练习册答案