精英家教网 > 高中数学 > 题目详情
16.已知复数z=-2+i,则复数$\frac{z+3}{\overline z+2}$的模为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 把z=-2+i代入$\frac{z+3}{\overline z+2}$,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.

解答 解:∵z=-2+i,
∴$\frac{z+3}{\overline z+2}=\frac{-2+i+3}{-2-i+2}=\frac{1+i}{-i}=-1+i$,
则复数$\frac{z+3}{\overline z+2}$的模$\sqrt{{{(-1)}^2}+{1^2}}=\sqrt{2}$,
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,考查复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知a,b为正实数,直线y=x-a与曲线y=ln(x+b)相切,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ的值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从甲、乙、丙、丁四个人中任选两名志愿者,则甲被选中,乙没有被选中的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了更好的了解某校高三学生期中考试的数学成绩情况,从所有高三学生中抽取40名学生,将他们的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…[90,100]后得到如图所示的频率分布直方图.
(1)求图中实数a的值;
(2)若该校高三年级有1800人,试估计这次考试的数学成绩不低于60分的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn是数列{an}的前n项和,则$\frac{{2{S_n}+8}}{{{a_n}+3}}({n∈{N^*}})$的最小值为(  )
A.$\frac{5}{2}$B.$\frac{8}{3}$C.$2\sqrt{5}-2$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系 xOy中,圆C1:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程;
(2)若直线$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$(t参数)与圆C1的交点为M,N,求△C1MN的面积(C1圆心).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.正项等比数列{an}中,公比q≠1,$\root{k}{{a}_{1}{a}_{2}…{a}_{k}}$=a11,则k=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过抛物线y2=4x焦点F的直线交抛物线于A,B两点,交其准线于点C,且A,C位于x轴同侧,若|AC|=2|AF|,则直线AB的斜率为(  )
A.±1B.$±\sqrt{3}$C.±2D.$±\sqrt{5}$

查看答案和解析>>

同步练习册答案