精英家教网 > 高中数学 > 题目详情
20.在△ABC中,BC=5,CA=8,∠C=60°,则$\overrightarrow{BC}•\overrightarrow{CA}$=-20.

分析 由题意画出图形,直接代入数量积公式求解.

解答 解:如图,

∵BC=5,CA=8,∠C=60°,
∴$\overrightarrow{BC}•\overrightarrow{CA}$=$|\overrightarrow{BC}||\overrightarrow{CA}|cos120°=5×8×(-\frac{1}{2})=-20$.
故答案为:-20.

点评 本题考查平面向量的数量积运算,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.二进制数1101100(2)化为十进制数是108.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2km,大圆的半径为4km,卫星P在圆环内无规则地自由运动,运行过程中,则点P与点O的距离小于3km的概率为(  )
A.$\frac{1}{12}$B.$\frac{5}{12}$C.$\frac{1}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD.
(1)求证:直线ED⊥平面PAC;
(2)若直线PE与平面PAC所成的角的正弦值为$\frac{\sqrt{5}}{5}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简 $\overrightarrow{AB}-\overrightarrow{CD}+\overrightarrow{BD}-\overrightarrow{AC}$的结果是(  )
A.$\overrightarrow 0$B.$\overrightarrow{AC}$C.$\overrightarrow{BD}$D.$\overrightarrow{DA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC的边长为a,b,c,定义它的等腰判别式为D=max{a-b,b-c,c-a}+min{a-b,b-c,c-a},则“D=0”是△ABC为等腰三角形的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象关于y轴对称,该函数的部分图象如图所示,△PMN是以MN为斜边的等腰直角三角形,且$|MN|•|MP|=2\sqrt{2}$,则f(1)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某同学从区间[-1,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…(xn,yn),该同学用随机模拟的方法估计n个数对中两数的平方和小于1(即落在以原点为圆心,1为半径的圆内)的个数,则满足上述条件的数对约有$\frac{nπ}{4}$个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,是一个组合体的三视图,图中四边形是边长为2的正方形,圆的直径为2,那么这个组合体的表面积是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案