精英家教网 > 高中数学 > 题目详情
17.如图,中心均为原点O的椭圆与双曲线有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则椭圆与双曲线的离心率的比值是为$\frac{1}{2}$.

分析 根据M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分,可得椭圆的长轴长是双曲线实轴长的2倍,利用双曲线与椭圆有公共焦点,即可求得双曲线与椭圆的离心率的比值.

解答 解:∵M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分
∴椭圆的长轴长是双曲线实轴长的2倍
∵双曲线与椭圆有公共焦点,
∴双曲线与椭圆的离心率的比值是2
椭圆与双曲线的离心率的比值是为:$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查椭圆、双曲线的几何性质,解题的关键是确定椭圆的长轴长是双曲线实轴长的2倍.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2cos2x-sin2x.
(1)求f($\frac{π}{3}$)的值;
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A,B是单位圆O上的点,C是单位圆O与x轴正半轴的交点,点A的坐标为($\frac{3}{5}$,$\frac{4}{5}$),三角形AOB为直角三角形,点B在第二象限
(1)求sin∠COA和cos∠COA的值
(2)求直线OB的方程
(3)求cos∠COB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为得到函数y=cos2x的图象,只需将$y=cos(2x+\frac{π}{6})$函数的图象(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=ax3+bx+c(a>0)为奇函数,其图象在点(1,f(1))处的线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.
(1)求a,b,c的值;
(2)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{π}{2}$$≤α≤\frac{3π}{2}$,则sin2α=(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.积分$\int_1^e{(\frac{1}{x}+2x)dx}$的值为(  )
A.1B.eC.e+1D.e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是①③④(写出所有正确命题的编号)
 ①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3
 ②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)2
 ③直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx;
 ④直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为$8\sqrt{3}$.

查看答案和解析>>

同步练习册答案