精英家教网 > 高中数学 > 题目详情
15.等比数列{an}的各项均为正数,且$2{a_1}+3{a_2}=1,{a_3}^2=9{a_2}{a_6}$.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列$\left\{{-\frac{1}{b_n}}\right\}$的前n项和Tn

分析 (1)由已知求出等比数列的公比,进一步求得首项,代入等比数列的通项公式求得数列{an}的通项公式;
(2)把数列{an}的通项公式代入bn=log3a1+log3a2+…+log3an,得到数列$\left\{{-\frac{1}{b_n}}\right\}$的通项公式,利用裂项相消法求得数列$\left\{{-\frac{1}{b_n}}\right\}$的前n项和Tn

解答 解:(1)设数列{an}的公比为q,由${{a}_{3}}^{2}=9{a}_{2}{a}_{6}$,得${{a}_{3}}^{2}=9{{a}_{4}}^{2}$,解得${q^2}=\frac{1}{9}$,
由条件可知an>0,故$q=\frac{1}{3}$.
由2a1+3a2=1,得2a1+3a1q=1,∴${a_1}=\frac{1}{3}$,
故数列{an}的通项公式为${a_n}=\frac{1}{3^n}(n∈{N^*})$;
(2)${b_n}={log_3}{a_1}+{log_3}{a_2}+…+{log_3}{a_n}=-(1+2+…+n)=-\frac{n(n+1)}{2}$,
∴$-\frac{1}{b_n}=2(\frac{1}{n}-\frac{1}{n+1})$,
∴${T_n}=(-\frac{1}{b_1})+(-\frac{1}{b_2})+…+(-\frac{1}{b_n})=2(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})=\frac{2n}{n+1}$.
∴数列$\left\{{-\frac{1}{b_n}}\right\}$的前n项和Tn=$\frac{2n}{n+1}$.

点评 本题考查数列递推式,考查了等比数列通项公式的求法,训练了裂项相消法求数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.“log2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$2=(5$\overrightarrow{a}$-4$\overrightarrow{b}$)•$\overrightarrow{b}$,则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>的最小值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+bx({a,b∈R})$.
(1)若函数f(x)在(0,2)上存在两个极值点,求3a+b的取值范围;
(2)当a=0,b≥-1时,求证:对任意的实数x∈[0,2],$|{f(x)}|≤2b+\frac{8}{3}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线x+y-2a=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=(  )
A.$4±\sqrt{15}$B.$±\frac{1}{3}$C.1或7D.$1±\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={a,b,d},B={c,d},则A∪B等于(  )
A.{d}B.{a,c}C.{a,b,c}D.{a,b,c,d}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y2=2x的准线方程为(  )
A.x=-1B.x=-$\frac{1}{2}$C.x=-$\frac{1}{4}$D.x=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆心坐标是(-1,2),半径长是$\sqrt{5}$的圆的方程为(x+1)2+(y-2)2=5.设直线y=2x与该圆相交于A,B两点,则弦AB的长为$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线y2=2px(p>0)的焦点为F,过抛物线上点P(2,y0)的切线为l,过点P作平行于x轴的直线m,过F作平行于l的直线交m于M,若|PM|=5,则p的值为6.

查看答案和解析>>

同步练习册答案