精英家教网 > 高中数学 > 题目详情
19.若函数$y=sin({2x+φ})({0<φ<\frac{π}{2}})$的图象的对称中心在区间$({\frac{π}{6},\frac{π}{3}})$内有且只有一个,则φ的值可以是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 根据正弦函数图象的对称中心是(kπ,0),求出φ的表达式,再根据题意求出φ的取值范围,即可得出φ的一个可能取值.

解答 解:根据题意,令2x+φ=kπ,k∈Z,
得φ=kπ-2x,k∈Z;
又函数f(x)图象的对称中心在区间($\frac{π}{6}$,$\frac{π}{3}$)内,
∴-2x∈(-$\frac{2π}{3}$,-$\frac{π}{3}$),
∴kπ-2x∈(kπ-$\frac{2π}{3}$,kπ-$\frac{π}{3}$),k∈Z;
当k=1时,φ∈($\frac{π}{3}$,$\frac{2π}{3}$),
又0<φ<$\frac{π}{2}$,
∴φ的一个可能取值是$\frac{5π}{12}$.
故选:D.

点评 本题考查了三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+|x|-|x-5|+2.
(1)求不等式f(x)<0的解集;
(2)若关于x的不等式|f(x)|≤m的整数解仅有11个,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.?x0∈R,sinx0+cosx0=$\frac{3}{2}$
B.?x≥0且x∈R,2x>x2
C.已知a,b为实数,则a>2,b>2是ab>4的充分条件
D.已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,AB=1,$∠ABC=\frac{π}{3}$,E为PD中点,PA=1.
(I)求证:PB∥平面AEC;
(Ⅱ)在棱PC上是否存在点M,使得直线PC⊥平面BMD?若存在,求出点M的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.欧拉(Leonhard  Euler,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的公式eix=cosx+isinx(i为虚数单位),将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式在复变函数理论中占有非常重要的地位,被誉为“数学中的天桥”.根据此公式可知,表示的复数e-iπ在复平面内位于
(  )
A.第一象限B.在实数轴上C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AC、BD相交于点O,点E、F、G分别为PC、AD、PD的中点,OP=OA,PA⊥PD.
求证:(1)FG∥平面BDE;
(2)平面BDE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α∈(0,$\frac{π}{2}$),sin2α=$\frac{1}{2}$,则sin($α+\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若双曲线焦距是8,且经过点(-$\frac{7}{3}$,4),则焦点在y轴上的双曲线的标准方程是$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{7}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y满足$\left\{\begin{array}{l}{x-1≤0}\\{y-2≤0}\\{2x+y-2>0}\end{array}\right.$若$\overrightarrow{m}$=(x+1,y)则$\sqrt{{\overrightarrow{m}}^{2}}$的取值范围为(  )
A.(15,2)B.($\frac{29}{2}$,2$\sqrt{2}$)C.(17,2$\sqrt{2}$)D.($\frac{4\sqrt{5}}{5}$,2$\sqrt{2}$]

查看答案和解析>>

同步练习册答案