精英家教网 > 高中数学 > 题目详情
16.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:OC∥AD;
(2)若AD=2,AC=$\sqrt{5}$,求AB的长.

分析 (1)求出∠DAC=∠ACO,从而判断OC∥AD即可;
(2)连接BC,证△ADC∽△ACB,根据相似三角形得出的对应边成比例线段,可将AB的长求出.

解答 (1)证明∵直线CD与⊙O相切于点C,
∴∠DCO=∠DCA+∠ACO=90°,
∵AO=CO,∴∠OAC=∠ACO,
∵AC平分∠DAB,∴∠DAC=∠OAC,
∴∠DAC=∠ACO,∴OC∥AD.
(2)解:由(1)知OC∥AD且OC⊥DC,
∴AD⊥DC,即∠ADC=90°,
连接BC,如图示:

∵AB是⊙O的直径,
∴∠ACB=90°,∴∠ADC=∠ACB,
又∵∠DAC=∠BAC,
∴△ADC∽△ACB,
∴$\frac{AD}{AC}$=$\frac{AC}{AB}$,
∵AD=2,AC=$\sqrt{5}$,
∴AB=$\frac{5}{2}$.

点评 本题考查了圆的切线问题,考查三角形相似的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{x^2}{4}$+y2=1上的一个点P(x,y),求u=2x+y的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过直线y=2x上的一点P作⊙M:(x-2)2+(y-1)2=1的两条切线l1,l2,A,B两点为切点.若直线l1,l2关于直线y=2x对称,则四边形PAMB的面积为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1.若a、b∈[-1,1],a+b≠0,有 $\frac{f(a)+f(b)}{a+b}$>0成立.
(1)判断函数f(x)在[-1,1]上是增函数还是减函数;
(2)解不等式f(x+$\frac{1}{2}$)>f(2x-1);
(3)若f(x)≤m2-2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x+$\frac{a^2}{x}$,g(x)=x+lnx,其中a≥1.
(1)若x=2是函数f(x)的极值点,求h(x)=f(x)+g(x)在(1,h(1))处的切线方程;
(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,b=$\sqrt{3}$,A+C=2B,则sinA=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-3=0}\\{x-y+1=0}\\{y≥1}\end{array}\right.$,则z=$\frac{2y}{x}$的最小值是(  )
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow{b}$|=1,且对任意实数x,不等式|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则tan2θ=(  )
A.-$\frac{12}{5}$B.$\frac{12}{5}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$sinx,cos2x),x∈R,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的表达式并完成下面的表格和画出f(x)在[0,π]范围内的大致图象;
0$\frac{π}{2}$π$\frac{3}{2}π$
x0π
f(x)

(2)若方程f(x)-m=0在[0,π]上有两个根α、β,求m的取值范围及α+β的值.

查看答案和解析>>

同步练习册答案