精英家教网 > 高中数学 > 题目详情
已知集合A={(x,y)|x(x-1)+y(y-1)≤r},集合B={(x,y)|x2+y2≤r2},若A⊆B,则r的取值范围为
 
考点:集合的包含关系判断及应用
专题:计算题,集合
分析:若由题意,A,B表示的圆内切或内含,由圆心距与半径之间的关系,构造关于r的不等式,解不等式即可得到实数r的取值范围.
解答: 解:若由题意,A,B表示的圆内切或内含
由于A中的圆的圆心为N(
1
2
1
2
),半径为
r+
1
2

B中的圆的圆心为M(0,0),半径为r,
则r-
r+
1
2
≥|MN|=
2
2

∴r≥
2
+1,
故答案为:r≥
2
+1.
点评:本题考查的知识点是圆与圆的位置关系及其判定,其中根据集合之间的关系,转化为圆与圆的位置关系,进而转化为圆心距与半径差之间的关系,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
4-x2
-x+m有两个零点,则m∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a2=2,a4a6=4a72,则a4的值为(  )
A、
1
2
B、1
C、2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的图象顶点为A(0,15),且图象在x轴上截得线段长为8.
(1)求函数f(x)的解析式;
(2)证明:函数f(x)在(1,+∞)上是减函数
(3)若g(x)=|f(x)|,试画出函数g(x)的图象(只画草图).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图Rt△O′A′B′是一平面图形的直观图,直角边O′B′=2,则这个平面图形的面积是(  )
A、2
2
B、1
C、4
2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性.
(1)f(x)=|sinx|;
(2)f(x)=sinxcosx.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式组:
|
2
a
|≤1
|
1
a
|>1

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(0,-1)的直线l,且被两条平行直线2x+y-6=0和4x+2y-5=0截得线段的长为
7
2
,求直线l方程.(用两直线夹角做)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1
x=1+t
y=-5+
3
t
(t为参数)和直线l2:x-y-2
3
=0的交于点P.
(1)求P点的坐标;
(2)求点P与Q(1,-5)的距离.

查看答案和解析>>

同步练习册答案