精英家教网 > 高中数学 > 题目详情
设点M,N分别是曲线ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的动点,求点M,N间的最小距离.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,数形结合可得以MNmin等于A到直线的距离减去半径,计算求得结果.
解答: 解:方程ρ+2sin θ=0化为直角坐标方程得x2+(y+1)2=1,
方程ρsin(θ+
π
4
)=
2
2
化为直角坐标方程得x+y-1=0,
如图所示,设圆x2+(y+1)2=1的圆心为A(0,-1),则当AN垂直于直线x+y-1=0时,AN最小,
AN与圆A交于点M,则MN最小.
因为A(0,-1),所以MNmin等于A到直线的距离减去半径,即
|0-1-1|
2
-1=
2
-1,
故点M,N间的最小距离是
2
-1.
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
x
sin2x
,x∈(-
π
2
,0)∪(0,
π
2
)的图象可能是下列图象中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,1),
b
=(1,-2)
(1)求
a
+2
b

(2)若|
c
|=1,且
a
-
c
a
-2
c
垂直,求
a
c
的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从集合{(x,y)|x2+y2≤4,x∈R,y∈R}内任选一个元素(x,y),则x,y满足x+y≥2的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,cosx),
n
=(
3
sinx,sinx),函数f(x)=
m
n

(1)求f(x)的最小正周期和单调递增区间;
(2)求f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场对每天进店的人数和商品销售进行统计对比,得到如下表格:
人数xi   10  15  20  25  303540
件数yi   4   7  12  15  202327
其中i=1,2,3,4,5,6,7
(1)求回归直线方程(结果保留到小数点后两位)
a=
.
y
-b
.
x
,b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
;或a=
.
y
-b
.
x
,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x

参考数据:
7
i=1
xiyi=3245,
.
x
=25,
.
y
=15.43,
7
i=1
xi2=5075,7
.
x
2=4375,7
.
x
.
y
=2700
(2)预测进店人数为80人时,商品销售的件数(结果保留整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+(1-a)x2-a(a+2)x+b,若函数f(x)在区间(-1,1)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=m(x-2m)(x+m+3),g(x)=x-1,若同时满足条件:①对任意实数x,有f(x)<0或g(x)<0②当x<-4时,f(x)•g(x)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足:|
a
|=1,|
b
|=1,|
a
+
b
|=
3
,则
a
a
+2
b
夹角的余弦值为:
 

查看答案和解析>>

同步练习册答案