精英家教网 > 高中数学 > 题目详情
6.已知不等式-x2-x+6>0,则该不等式的解集是(  )
A.(-2,3)B.(-3,2)C.(-∞,-3)∪(2,+∞)D.(-∞,-2)∪(3,+∞)

分析 不等式-x2-x+6>0,化为:(x+3)(x-2)<0,解出即可得出.

解答 解:不等式-x2-x+6>0,化为x2+x-6<0,因式分解为:(x+3)(x-2)<0,解得-3<x<2.
则该不等式的解集是(-3,2).
故选:B.

点评 本题考查了一元二次不等式的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.执行如图所示程序框图,输出的a=(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量$\overrightarrow{OA}=({{x_1},f({x_1})}),\overrightarrow{OB}=({{x_2},f({x_2})}),\overrightarrow{OM}=({x,y})$,且实数λ满足x=λx1+(1-λ)x2,此时向量$\overrightarrow{ON}=λ\overrightarrow{OA}+({1-λ})\overrightarrow{OB}$.若$|{\overrightarrow{MN}}$|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2-2x在区间[1,2]上可在标准K下线性近似,那么K的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知5a=10b=1024,则$\frac{1}{a}-\frac{1}{b}$的值为$-\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,a,b,c分别是角A、B、C的对边,已知$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(cosA,cosB),$\overrightarrow{p}$=(2$\sqrt{2}$sin$\frac{B+C}{2}$,2sinA),若$\overrightarrow{m}$∥$\overrightarrow{n}$,${\overrightarrow{p}}^{2}$=9,求A、B、C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的内角A,B,C所对的边分别为:a,b,c,$若满足\sqrt{3}a=b(\sqrt{3}cosC+sinC)$,则
(1)求B的值;
(2)若b=2,求a+c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)已知$f(α)=\frac{sin(π-α)cos(2π-α)tan(-α+π)}{tan(-π-α)sin(-π-α)}$,若α是第三象限角,且$cos({α-\frac{3π}{2}})=\frac{{2\sqrt{6}}}{5}$,求f(α)的值
(Ⅱ) 已知$α,β∈(0,\frac{π}{4}),且3sinβ=sin(2α+β),\begin{array}{l}{\;}{4tan\frac{α}{2}=1-{{tan}^2}}\end{array}\frac{α}{2}$,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,2).
(1)若向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,求实数λ的值;
(2)若向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为$\frac{3π}{4}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知cos(2π-α)=$\frac{3}{5}$,tan(π-α)>0,求cotα的值.

查看答案和解析>>

同步练习册答案