精英家教网 > 高中数学 > 题目详情
19.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}$,且z=3x+y的最大值为(  )
A.5B.6C.7D.8

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=3x+y得y=-3x+z,
平移直线y=-3x+z,
由图象可知当直线y=-3x+z经过点C时,直线y=-3x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$,解得x=2,y=-1,
即C(2,-1),
代入目标函数z=3x+y得z=3×2-1=5.
即目标函数z=3x+y的最大值为5.
故选:A.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.化简:$\frac{sin(2π-α)tan(α+π)tan(-α-π)}{cos(π-α)tan(3π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=1+i,则$|{\frac{{\sqrt{2}i}}{z}}|$=(  )
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|x2>1},N={-2,-1,0,1,2},则M∩N=(  )
A.{0}B.{2}C.{-2,-1,1,2}D.{-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,A=60°,BC=$\sqrt{10}$,D是AB边上的一点,CD=$\sqrt{2}$,△BCD的面积为1,则AC的长为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数$z=\frac{1-3i}{1+i}$,则|z+1|=(  )
A.3B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sin(2x+φ)的图象沿x轴向左平移$\frac{π}{8}$个单位后,得到一个偶函数的图象,设φ取最小正值时所得偶函数为g(x),则函数y=x2g(x)的部分图象可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,以点(2,-3)为圆心且与直线2mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x-2)2+(y+3)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式$\frac{1}{x}$-1≤0的解集是{x|x<0或x≥1}.

查看答案和解析>>

同步练习册答案