精英家教网 > 高中数学 > 题目详情
13.若C${\;}_{n}^{2}$=C${\;}_{n-1}^{2}$+C${\;}_{n-1}^{3}$(n∈N*),则($\root{3}{x}$-$\frac{1}{2\sqrt{x}}$)n的常数项为(  )
A.-6B.12C.$\frac{5}{2}$D.-$\frac{5}{2}$

分析 根据组合数的性质,求出n的值,再利用二项式展开式的通项公式,求出展开式的常数项.

解答 解:根据组合数的性质,得:
C${\;}_{n}^{2}$=C${\;}_{n-1}^{2}$+C${\;}_{n-1}^{3}$=${C}_{n}^{3}$,
解n=5;
所以($\root{3}{x}$-$\frac{1}{2\sqrt{x}}$)5展开式的通项公式为:
Tr+1=${C}_{5}^{r}$•${(\root{3}{x})}^{5-r}$•${(-\frac{1}{2\sqrt{x}})}^{r}$=${(-\frac{1}{2})}^{r}$•${C}_{5}^{r}$•${x}^{\frac{5}{3}-\frac{5}{6}r}$,
令$\frac{5}{3}$-$\frac{5}{6}$r=0,解得r=2;
所以展开式的常数项为${(-\frac{1}{2})}^{2}$•${C}_{5}^{2}$=$\frac{5}{2}$.
故选:C.

点评 本题主要考查了组合数的性质与二项式定理的应用问题,正确运用组合数的性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2cosxsin(x+$\frac{π}{6}$)+1,x∈R.
(1)求函数f(x)的最小正周期及在[0,π]上的单调递增区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.an=$\left\{\begin{array}{l}{2n-1(n=2k+1,k∈N)}\\{{2}^{\frac{n}{2}}(n=2k+2,k∈N)}\end{array}\right.$,则S20=210+189.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中真命题的个数为(  )
(1)两个有共同起点且相等的向量,其终点可能不同;
(2)若非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线,则A,B,C,D四点共线;
(3)若四边形ABCD是平行四边形,则必有$\overrightarrow{AB}$=$\overrightarrow{CD}$;
(4)$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow a$与$\overrightarrow b$的方向相同或相反.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:
(1)sin35°cos25°+sin55°cos65°;
(2)cos28°cos73°+cos62°cos17°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若${∫}_{0}^{a}$$\sqrt{{a}^{2}-{x}^{2}}$dx=π(a>0),则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,若$\overrightarrow{AC}$=(1,2),$\overrightarrow{BD}$=(-4,2),则四边形ABCD的面积是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如果复数z=(m2+m-1)+(4m2-8m+3)i(m∈R)对应的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“xy=0”是“y=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案