精英家教网 > 高中数学 > 题目详情
在平面四边形ABCD中,AB=3,BC=4,∠ABC=90°,△ACD是正三角形,则
AC
BD
的值为(  )
A、-2
B、2
C、
7
2
D、-
7
2
考点:平面向量数量积的运算
专题:平面向量及应用
分析:如图所示,建立直角坐标系.取AC的中点E,连接DE,BE.由A(0,3),C(4,0),可得E(2,
3
2
)

由于
DE
AC
,可得
DE
AC
=0.利用
AC
BD
=
AC
•(
BE
+
ED
)
=
AC
BE
即可得出.
解答: 解:如图所示,建立直角坐标系.
取AC的中点E,连接DE,BE.
∵A(0,3),C(4,0),∴E(2,
3
2
)

DE
AC
,∴
DE
AC
=0.
AC
BD
=
AC
•(
BE
+
ED
)
=
AC
BE

=(4,-3)•(2,
3
2
)

=8-
9
2

=
7
2

故选:C.
点评:本题考查了向量垂直与数量积的关系、数量积运算性质、向量的三角形法则,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A={x|3x-7>0},则∁RA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(sinx-1,1),
b
=(sinx+3,1),
c
=(-1,-2),
d
=(k,1),k∈R.
(Ⅰ)若x∈[-
π
2
π
2
],且
a
∥(
b
+
c
),求x的值;
(Ⅱ)若存在x∈R,使得(
a
+
d
)⊥(
b
+
c
),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在正方体ABCD-A1B1C1D1中,面对角线A1B、BC1的中点为E、F,求证:EF∥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

设D是不等式组
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos2xcos
π
5
-2sinxcosxsin
5
的递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,M,N分别是CD,BC的中点,
AM
=(1,2) , 
AN
=(3,1),则
AB
AM
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ) 如图,一个扇形OAB的面积是1cm2,它的周长是4cm,求圆心角的弧度数和弦长AB.
(Ⅱ) 已知f(x)=-sin2x+sinx+a,若1≤f(x)≤
17
4
对一切x∈R恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为{x|x∈R且x≠0},对定义域内的任意x1,x2,都有f(x1•x2)=f(x1)+f(x2),且当x>1时,f(x)>0,
(1)求f(-1)的值;
(2)求证:f(x)是偶函数;
(3)求证:f(x)在(0,+∞)上是增函数;
(4)当f(16)=2时,解不等式f(x)+f(6x-5)<1.

查看答案和解析>>

同步练习册答案