精英家教网 > 高中数学 > 题目详情
6.“$\frac{1}{a}$>1”是“函数f(x)=(3-2a)x单调递增”(  )
A.充分不必要B.必要不充分
C.充分且必要D.既不充分也不必要

分析 根据充分条件和必要条件的定义结合条件求出对应的等价条件,进行判断即可.

解答 解:由$\frac{1}{a}$>1得0<a<1,
若函数f(x)=(3-2a)x单调递增,
则3-2a>1,
解得a<1,
故“$\frac{1}{a}$>1”是“函数f(x)=(3-2a)x单调递增”的充分不必要条件,
故选:A

点评 本题主要考查充分条件和必要条件的判断,根据不等式的关系以及指数函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如表是某厂1-4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y与月份x之间有线性相关关系,其线性回归方程是$\widehat{y}$=-0.7x+$\widehat{a}$,则$\widehat{a}$=(  )
 月份x 1 2 3 4
 用水量y 4.52.5 
A.5.15B.5.20C.5.25D.5.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=($\frac{1}{a}$)2-2x(a>0,a≠1)的图象恒经过与a无关的定点A,
(1)求点A的坐标
(2)若偶函数g(x)=ax2+bx-c,x∈[1-2c,c]的图象过点A,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,则该几何体的外接球的体积为(  )
A.4$\sqrt{3}$πB.$\frac{4\sqrt{3}π}{3}$C.4$\sqrt{2}$πD.$\frac{4\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=f($\frac{x}{2}$-$\frac{π}{12}$)•f($\frac{x}{2}$+$\frac{π}{12}$)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中,含x2项的系数是-192.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到函数y=tan(3x+$\frac{π}{3}$)的图象,只须将x=tan3x的图象上的所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{9}$个单位长度D.向右平移$\frac{π}{9}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设点P是Z轴上一点,且点P到M(1,0,2)与点N(1,-3,1)的距离相等,则点P的坐标是(  )
A.(-3,-3,0)B.(0,0,3)C.(0,-3,-3)D.(0,0,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.当m为何实数时,方程(m+2)x2-2mx+1=0有两个不相等的实数根?

查看答案和解析>>

同步练习册答案