精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=f($\frac{x}{2}$-$\frac{π}{12}$)•f($\frac{x}{2}$+$\frac{π}{12}$)的单调递增区间.

分析 (1)根据三角函数的图象求出A,ω和φ的值即可求函数f(x)的解析式;
(2)求出g(x)的表达式,利用三角函数的单调性即可求出单调递增区间.

解答 解:(1)由图象知函数的周期T=2($\frac{11π}{12}-\frac{5π}{12}$)=π,
即ω=$\frac{2π}{T}=\frac{2π}{π}$=2,
则f(x)=Asin(2x+φ),
∵0<φ<$\frac{π}{2}$,
∴由五点对应法知2×$\frac{5π}{12}$+φ=π,
解得φ=$\frac{π}{6}$,即f(x)=Asin(2x+$\frac{π}{6}$),
∵f(0)=Asin$\frac{π}{6}$=$\frac{1}{2}A$=1,
∴A=2,
即函数f(x)的解析式f(x)=2sin(2x+$\frac{π}{6}$);
(2)g(x)=f($\frac{x}{2}$-$\frac{π}{12}$)•f($\frac{x}{2}$+$\frac{π}{12}$)=2sin(x-$\frac{π}{6}$+$\frac{π}{6}$)•2sin(x+$\frac{π}{6}$+$\frac{π}{6}$)=4sinxsin(x+$\frac{π}{3}$)
=4sinx($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)=2sin2x+2$\sqrt{3}$sinxcosx=1-cos2x+$\sqrt{3}$sin2x=2sin(2x-$\frac{π}{6}$)+1,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
即g(x)的单调递增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

点评 本题主要考查三角函数的图象和性质,根据图象求出A,ω和φ的值是解决本题的关键.综合考查三角函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的极坐标方程为ρsin(θ-$\frac{π}{3}$)=6,圆C的参数方程为$\left\{\begin{array}{l}{x=10cosθ}\\{y=10sinθ}\end{array}\right.$,(θ为参数).
(1)求直线l的直角坐标方成;
(2)求直线l被圆截得得弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知角α的终边经过点P(-b,4)且cosα=-$\frac{3}{5}$,则b的值等于(  )
A.3B.-3C.±3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.命题p:已知f(x)=x2+(m2-1)x+(m-2)的一个零点比1大,一个零点比1小.
命题q:$\frac{1}{{m}^{2}}$-4m2≤-$\frac{3}{{x}^{2}}$-$\frac{2}{x}$+1在x∈[$\frac{3}{2}$,+∞)上恒成立.
若¬p为假命题,p∧q为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.求值:tan40°+tan20°+$\sqrt{3}$tan40°•tan20°=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“$\frac{1}{a}$>1”是“函数f(x)=(3-2a)x单调递增”(  )
A.充分不必要B.必要不充分
C.充分且必要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对任意给定的实常数a,设命题p:方程ax2+(a-2)y2=1的曲线是双曲线;命题q:?x0>0,x0+a-1=0,若“p∧(¬q)”为真命题,则a的取值范围是[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥A-BCD中,AB⊥平面BCD,BC⊥BD,AB=3,BC=BD=4,点E,F分别是AC,AD的中点
(1)判断直线EF与平面BCD的位置关系,并说明理由
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为1.6,两焦点的距离为3,则a+b=$\frac{15}{16}$+$\frac{3\sqrt{39}}{16}$.

查看答案和解析>>

同步练习册答案