精英家教网 > 高中数学 > 题目详情
9.已知数列{an},an+1=an+2,a1=1,数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn,则使一切Sn<$\frac{m}{16}$成立的m的最小正整数是8.

分析 由题意求出数列{an}的通项公式,代入数列{$\frac{1}{{a}_{n}{a}_{n+1}}$},由错位相减法求其前n项和为Sn,得到Sn$<\frac{1}{2}$,再由$\frac{1}{2}≤\frac{m}{16}$求得使一切Sn<$\frac{m}{16}$成立的m的最小正整数.

解答 解:由an+1=an+2,且a1=1,知数列{an}是首项为1,公差为2的等差数列,
则an=1+(n-1)×2=2n-1,
∴$\frac{1}{{a}_{n}{a}_{n+1}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
则${S}_{n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$.
令f(n)=$\frac{n}{2n+1}$,则$f(n)=\frac{1}{2+\frac{1}{n}}<\frac{1}{2}$,
由Sn<$\frac{m}{16}$,得$\frac{1}{2}≤\frac{m}{16}$,即m≥8.
∴使一切Sn<$\frac{m}{16}$成立的m的最小正整数是8.
故答案为:8.

点评 本题考查等差数列的通项公式,考查了错位相减法求数列的和,考查了数列的函数特性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2$\sqrt{5}$,AA1=$\sqrt{7}$,BB1=2$\sqrt{7}$,点E和F分别为BC和A1C的中点.
(Ⅰ)求证:EF∥平面A1B1BA;
(Ⅱ)求证:平面AEA1⊥平面BCB1
(Ⅲ)求直线A1B1与平面BCB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC的面积为4,点E、F分别在边AB、AC上,且$\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{BC}$,若P为线段EF上一动点,则$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\overrightarrow{BC}$2的最小值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3\sqrt{6}}{2}$C.$\frac{8\sqrt{3}}{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知某三棱锥的三视图如图所示,则它的外接球体积为$\frac{4}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数y=f(x)的图象过点A(8,2),则f(log2$\frac{5}{8}$+log${\;}_{\frac{1}{2}}$160)等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设方程log2x-($\frac{1}{2}$)x=0与log${\;}_{\frac{1}{4}}$x-($\frac{1}{4}$)x=0的根分别为x1,x2,则(  )
A.0<x1x2<1B.x1x2=1C.1<x1x2<2D.x1x2≥2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解方程:sin2x+2sinxcosx=0(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有下列说法:
①$\overrightarrow{a}$•$\overrightarrow{0}$=$\overrightarrow{0}$;
②0•$\overrightarrow{a}$=0;
③$\overrightarrow{0}$-$\overrightarrow{AB}$=$\overrightarrow{BA}$;
④|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|;
⑤($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{{a}^{2}}$•$\overrightarrow{{b}^{2}}$;
⑥$\overrightarrow{a}$与$\overrightarrow{b}$是两个单位向量,则$\overrightarrow{{a}^{2}}$=$\overrightarrow{{b}^{2}}$;
⑦若$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$),则$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,其中正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知ax2+bx+c=0的两个根为-2和3,求ax2-bx+c<0.

查看答案和解析>>

同步练习册答案