精英家教网 > 高中数学 > 题目详情
12.已知x,y满足约束条件$\left\{\begin{array}{l}{2x+5y≥10}\\{2x-3y≤-6}\\{2x+y≤10}\end{array}\right.$,求$\frac{y+1}{x+1}$的取值范围.

分析 先根据约束条件画出可行域,再明确目标函数几何意义,目标函数表示动点(x,y)与定点P(-1,-1)连线斜率,过P做直线与可行域相交可计算出直线斜率,从而得出所求目标函数范围

解答 解:x,y满足约束条件$\left\{\begin{array}{l}{2x+5y≥10}\\{2x-3y≤-6}\\{2x+y≤10}\end{array}\right.$,
对应的平面区域如图
$\frac{y+1}{x+1}$表示可行域内任一点(x,y)
与定点P(-1,-1)连线的斜率.
由图可知,过A(3,4)的直线斜率为$\frac{5}{4}$,
直线2x+5y=10的斜率为-$\frac{2}{5}$,
所以$\frac{y+1}{x+1}$的取值范围是(-∞,-$\frac{2}{5}$)∪[$\frac{5}{4}$,+∞).

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在下列函数中,最小值为2的是(  )
A.y=$\frac{x}{2}+\frac{2}{x}$B.y=$\sqrt{{x}^{2}+2}+\frac{1}{\sqrt{{x}^{2}+2}}$
C.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)D.y=7x+7-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设不等式($\frac{1}{2}$)${\;}^{{x}^{2}-x}$>1的解集为M.
(1)求集合M;
(2)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)图象的一条对称轴为x=$\frac{π}{12}$,则要得到函数F(x)=f′(x)-f(x+$\frac{π}{12}$)的图象,只需把函数f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
B.向右平移$\frac{π}{6}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
C.向左平移$\frac{π}{3}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍
D.向右平移$\frac{π}{3}$个单位,纵坐标伸长为原来的$\sqrt{3}$倍

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若{5}⊆A⊆{3,4,5,6,7}且对集合A中任意一个元素a∈A,则有10-a∈A,则符合条件的集合A有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若集合A={x|x=3m-2,m∈Z},B={x|x=3m+1,m∈Z},C={x|x=6m+1,m∈Z},则集合A、B、C的关系是C?B=A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知命题p:方程x2-mx+1=0有实数解,命题q:x2-2x+m>0对任意x恒成立,若命题q∨(p∧q)为真,¬p为真,则实数m的取值范围是1<m<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的图象在点(x0,f(x0))处的切线方程为l:y=g(x),若函数f(x)满足?x∈I(其中I为函数f(x)的定义域),当x≠x0时,(f(x)-g(x))(x-x0)<0恒成立,则称x=x0为函数f(x)的“分界点”.已知函数f(x)满足f(1)=5,f′(x)=6-2x-$\frac{4}{x}$,则函数f(x)的“分界点”的个数为(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\frac{2x+1}{x+a}$在(-2,+∞)上单调递增,则实数a的取值范围[2,+∞).

查看答案和解析>>

同步练习册答案