精英家教网 > 高中数学 > 题目详情
19.若x,y满足不等式组$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+y-4≤0\end{array}\right.$,z=x-2y,则z的最大值是2.

分析 作出可行域,变形目标函数,平移直线y=$\frac{1}{2}$x可得结论,代值计算可得.

解答 解:作出不等式组$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+y-4≤0\end{array}\right.$所对应的可行域(如图△ABC),
变形目标函数z=x-2y可得y=$\frac{1}{2}$x-$\frac{1}{2}$z,平移直线y=$\frac{1}{2}$x可得,
当直线经过点A(2,0)时,直线截距-$\frac{1}{2}$z最小,z取最大值,
代值计算可得z的最大值为2,
故答案为:2.

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈R,log2x=2015,则¬p为(  )
A.?x∉R,log2x=2015B.?x∈R,log2x≠2015
C.?x0∈R,log2x0=2015D.?x0∈R,log2x0≠2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$α,β∈(0,\frac{π}{2})$且$tanα-tanβ=\frac{1}{cosβ}$,则(  )
A.$3α+β=\frac{π}{2}$B.$2α+β=\frac{π}{2}$C.$3α-β=\frac{π}{2}$D.$2α-β=\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式|x+3|+|x-1|<a2-3a有解的实数a的取值范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x<1,都有log${\;}_{\frac{1}{3}}}$x<0,命题q:?x∈R,使得x2≥2x成立,则下列命题是真命题的是(  )
A.p∨qB.(¬p)∧(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.幂函数f(x)=(m2-3m+3)x${\;}^{{m^2}-2m+1}}$在区间(0,+∞)上是增函数,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥A-BCPE中,侧面PAC为正三角形,∠ACB=90°,二面角P-AC-B为直二面角,PE∥BC且$\frac{PE}{CB}$=μ(μ>0),点M,N分别是侧棱AE、AP上的点,且$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ(0<λ<1)
(1)若λ=$\frac{1}{2}$,BC=2PC,且异面直线CM与AB所成的角为90°,求实数μ的值;
(2)若平面ABC与平面CMN所成的锐二面角为45°,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从3个英语教师和5个语文教师中选取4名教师参加外事活动,其中至少要有一名英语教师,则不同的选法共有(  )
A.$A_3^1A_5^3+A_3^2A_5^2+A_3^3A_5^1$
B.$C_3^1C_5^3+C_3^2C_5^2+C_3^3C_5^1$
C.$C_3^1C_7^3$
D.$({C_3^1C_5^3+C_3^2C_5^2+C_3^3C_5^1})A_4^4$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C的对边分别是a,b,c,面积为S,若S≥$\frac{1}{2}$ab,b2+ac=a2+c2,则a:b:c等于(  )
A.3:4:5B.1:1:$\sqrt{2}$C.1:$\sqrt{2}$:$\sqrt{3}$D.1:$\sqrt{3}$:2

查看答案和解析>>

同步练习册答案